
Embedded application development using eCos

John L Dallaway
eCosCentric Limited

Cambridge UK
jld@ecoscentric.com

INTRODUCTION

eCos [1] is a portable, open source, royalty-free, real-time operating system (RTOS) that is well
suited for resource-constrained embedded applications. The advent of low cost 32-bit system-on-
chip solutions incorporating limited-capacity Flash and RAM components has led to renewed
demand for small-footprint RTOS components. eCos addresses this requirement by providing a
rich set of run-time features which may be configured to match application requirements precisely.
One of the key distinguishing features of eCos is its advanced configuration system that provides
the infrastructure necessary to define the configurable features of the operating system, specify
dependencies between these features and infer configuration changes that may be required to
produce a self-consistent version of the operating system.

This paper provides an illustration of embedded application development using eCos. It serves to
guide the reader through each of the engineering activities involved in working with eCos including
operating system configuration using the eCos Configuration Tool, cross-platform debugging via
an Eclipse-based IDE and application deployment in Flash memory. The ease with which eCos
may be configured for a specific application and subsequently optimised is emphasised.

CONFIGURATION

Terminology

The eCos run-time code is made available as a set of building blocks referred to as eCos
packages. Each package provides C/C++ source code, header files, documentation and a
configuration script which describes the package and its configurable features. The configuration
script is written in a language developed specifically for this purpose - the Component Definition
Language (CDL). Each eCos package exports a well-defined API and has an associated version
identifier. This allows for the updating of an individual package within an eCos repository
independently of other packages. Configuration of eCos at a macroscopic level is achieved by
selecting a set of hardware-specific eCos packages appropriate for a particular hardware platform
and a set of hardware-independent eCos packages appropriate for a particular application area.

Each package provides one or more configurable components which may be closely linked via
shared data or other internal interfaces. Each component provides a number of configurable
options to control operating system behaviour at a microscopic level. These options may be
Boolean, allowing a specific behaviour to be enabled/disabled, they may provide a numeric or
string value, defining the length of a data buffer for example, or they may combine the two,
providing a value when enabled but also allowing the associated feature to be disabled.
Configurable options are implemented in the eCos source code as C pre-processor macros. The
values of these macros are defined in header files generated by eCos-specific configuration tools.

– 1 –

Use of the pre-processor for configuration in this way allows for code size optimisation by reducing
the semantics of specific source code functions, providing gains beyond those offered by linker
garbage collection.

Host tools

eCos packages and their associated configuration options are manipulated by the application
developer using a graphical eCos Configuration Tool. This tool runs on a development PC
(Windows or Linux) and provides a view of the entire configuration space in the form of a tree. This
view allows the developer to comprehend the large number of configurable options provided by the
operating system. The properties of the currently selected configuration option are presented,
including default value, value constraints and a short description of the option which assists the
developer in selecting an appropriate value. The value itself may be modified using either a check
box, a text box, a drop-down list box or increment/decrement buttons as appropriate. When a
configuration option is modified, an inference engine evaluates the change and determines
whether all logical dependencies between configuration options are still satisfied. If necessary, the
inference engine will propose additional configuration changes to maintain the integrity of the
configuration space. The developer is at liberty to accept the proposed changes or to make
alternative changes to resolve the conflict.

A command line version of the tool (ecosconfig) is also available. This tool allows for scripted
configuration of eCos or may be used for interactive configuration by developers with a preference
for command-line tools.

As one would expect, eCos configurations generated using these tools may be saved to file for
later retrieval. Other facilities allow for the exporting of configuration changes relative to one of the
pre-defined template configurations included within each eCos source code repository. These
changes may then be imported into another eCos configuration, allowing for the merging of
configuration data.

COMPILATION

Following configuration, the eCos host tools may be used to generate an eCos build tree which is
populated with a number of GNU makefiles, one for each eCos package included in the
configuration. Compilation of eCos is effected by invoking GNU make on a top-level makefile that
references each of the package makefiles in turn. The source code is compiled using a version of
GCC built for cross-compilation to the appropriate processor architecture. The resulting object
code is placed in an eCos install tree in the form of a library archive file and a set of ancillary object
files suitable for static linking with application code. A number of linker scripts are provided,
allowing application code to be linked for execution from RAM for debugging purposes or to be
linked for execution directly from Flash memory for deployment in the field. A third option involves
compiling eCos with optional startup code that relocates application code from Flash to RAM
during early initialisation to achieve higher performance. A number of header files are also emitted
by the eCos build and placed alongside the library in the install tree. These header files provide the
API definitions by which application code can make calls into the library. They also define the value
of each configuration option within the library, allowing application code to adapt its own behaviour
to accommodate the configuration of eCos against which it is being built.

DEBUGGING

The downloading and debugging of eCos applications is typically achieved using GDB running on
the development PC and communicating over a suitable channel such as RS232 serial using the
GDB remote protocol. This approach relies on a GDB stub which must be installed on the target for
execution at system reset. The eCos repository includes thread-aware GDB stub code for all the
major embedded processor architectures and this code may also be included in the RedBoot
debug and bootstrap firmware. RedBoot provides additional facilities for debugging over TCP/IP
Ethernet and for managing code, data and filesystem images in Flash memory. Both RedBoot and
the GDB stub are based on the eCos hardware abstraction layer, allowing rapid porting of this
software to any eCos-enabled platform.

– 2 –

Hardware-based debug solutions using a JTAG or BDM interface may also be used with eCos.
Such solutions rely on hardware initialisation via an appropriate hardware setup file to mirror the
low-level board initialisation which would otherwise be performed by startup code in the GDB stub.
A hardware-based debug solution is essential where the target hardware platform provides
insufficient RAM to accommodate the application code. In such cases, the application must be
downloaded to Flash for debugging purposes.

A number of graphical front-ends for GDB are available and many developers find such tools more
convenient than the GDB command line. The well-known Eclipse IDE initiative includes a C/C++
Development Tools project (CDT) [2] and the debug support provided by the CDT plug-ins may be
adapted for cross-development purposes. CDT retrieves target state, such as the current value of
local variables, on a just-in-time basis and is therefore able to retain a responsive user interface
when working with remote targets.

DEVELOPMENT ILLUSTRATION

Example application

For the purpose of illustration, we can envisage a small networked appliance which is capable of
serving a hierarchy of digital image files to a remote web browser. The appliance connects to a
local network via Ethernet. Images are stored in Flash memory. This appliance will be prototyped
on a low-cost processor evaluation board which incorporates both an Ethernet port and a Flash
memory part with sufficient capacity for holding multiple images.

The significant run-time components for this application are as follows:

● A TCP/IP stack
● An HTTP server
● A Flash-resident filesystem
● A file transfer mechanism to populate the filesystem

eCos packages are available which provide each of these features and the first stage of the eCos
configuration process is to select the packages that will be necessary to support this application.
Of those filesystems currently ported to eCos, the Journalling Flash FileSystem (JFFS2) is the
most appropriate. JFFS2 is a log-structured filesystem specifically designed to reside in Flash and
survive power failure during file write operations without corruption.

Several TCP/IP stacks have been ported to eCos and the developer has the luxury of selecting
either a stack based on the FreeBSD sources for high performance or a stack based on lwIP
sources to minimise code and data requirements. In this example, the FreeBSD stack is used. A
TFTP client is included with the eCos networking infrastructure and this can be used for
transferring images to the board.

Macroscopic configuration

The initial selection of eCos packages is simplified by the availability of a number of configuration
templates. Each template defines a set of hardware-independent packages appropriate for a
specific application area. In the case of a networked application requiring POSIX-like compatibility,
the net template might be appropriate, but in this example the default template is used. The default
template provides the following eCos packages:

eCos package name Description

CYGPKG_HAL eCos common HAL

CYGPKG_IO I/O sub-system

CYGPKG_IO_SERIAL Generic serial I/O support

CYGPKG_INFRA Infrastructure

– 3 –

eCos package name Description

CYGPKG_KERNEL eCos kernel

CYGPKG_MEMALLOC Dynamic memory allocation

CYGPKG_ISOINFRA ISO C and POSIX infrastructure

CYGPKG_LIBC C library

CYGPKG_LIBC_I18N ISO C library internationalization

CYGPKG_LIBC_SETJMP ISO C library non-local jumps

CYGPKG_LIBC_SIGNALS ISO C library signals

CYGPKG_LIBC_STARTUP ISO environment startup/termination

CYGPKG_LIBC_STDIO ISO C library standard input/output functions

CYGPKG_LIBC_STDLIB ISO C library general utility functions

CYGPKG_LIBC_STRING ISO C library string functions

CYGPKG_LIBC_TIME ISO C library date/time functions

CYGPKG_LIBM Math library

CYGPKG_IO_WALLCLOCK Wallclock I/O support

CYGPKG_ERROR Common error code support

When the eCos Configuration Tool is invoked, a configuration based on this default template and
the drivers associated with the default target hardware platform is automatically created in memory
and presented to the developer for further manipulation (figure 1). If an alternative template or
target is required, these may be selected via the templates dialog box. In addition to the eCos
packages provided by the default template, the following packages are required:

Additional eCos package name Description

CYGPKG_IO_FILEIO Generic file I/O support

CYGPKG_IO_FLASH Generic Flash support

CYGPKG_FS_JFFS2 JFFS2 filesystem

CYGPKG_CRC CRC support

CYGPKG_COMPRESS_ZLIB Zlib compress/decompress support

CYGPKG_LINUX_COMPAT Linux compatibility functions

CYGPKG_NET Generic networking support

CYGPKG_NET_FREEBSD_STACK FreeBSD TCP/IP stack

CYGPKG_IO_ETH_DRIVERS Generic ethernet driver support

CYGPKG_HTTPD HTTP server

These packages are added via the packages dialog box. Note that some of these packages are
not obvious direct requirements for this application but are required by other packages which are to
be added. For example, the JFFS2 filesystem package requires generic file I/O, generic Flash I/O,
CRC, Zlib and Linux compatibility functions provided by other eCos packages. If a developer were
to add the JFFS2 filesystem package to the eCos configuration without these supporting
packages, then the eCos Configuration Tool would indicate that the required packages are missing
and should also be added.

Microscopic configuration

When adding new eCos packages to an existing eCos configuration, a number of conflicts may be
reported which concern individual configuration options within the packages. For example, the
JFFS2 filesystem requires that the generic file I/O package provides inode support. Such support is
not required by all filesystems and so the generic file I/O package does not provide this support by

– 4 –

default. In this case, the eCos Configuration Tool can use the information provided within the CDL
scripts of the various eCos packages to infer that the generic inode support option
(CYGPKG_IO_FILEIO_INODE) must be enabled. A conflict resolution dialog box is presented to
the developer, advising which options should be modified and allowing the developer to resolve the
conflicts with a single mouse click.

In addition to those configuration changes necessary to resolve configuration conflicts, there will be
a number of configuration changes necessary to support specific application requirements. In the
case of this example application, a web browser may attempt to retrieve many image files
concurrently and the maximum number of open files permitted by eCos
(CYGNUM_FILEIO_NFILE) should be increased from the default value of 16. A number of options
which provide an enhanced debugging experience may also be beneficial in an initial configuration.
eCos assertion and tracing support should be enabled (CYGPKG_INFRA_DEBUG) and compiler
optimisation should be disabled (CYGBLD_GLOBAL_CFLAGS).

Having manipulated the eCos configuration to a point where it is expected to serve all application
requirements, the configuration is saved. At this point, the eCos build tree is generated by the
eCos Configuration Tool and populated with makefiles. The eCos library can then be built directly
from the host tool.

Application project creation

The Eclipse platform with C/C++ Development Tooling (CDT) plug-ins provides a powerful
environment for C/C++ application development. Although CDT is not specifically designed for
cross-platform development, modified CDT plug-ins are available to simplify the process of
downloading code to a remote target when launching a debug session.

CDT provides options for creating both Standard Make and Managed Make projects. Standard
Make projects incorporate a regular GNU makefile that the developer must maintain. With
Managed Make projects, CDT generates and maintains an appropriate GNU makefile
automatically as source files are added to and removed from the project.

An eCosCentric plug-in [3] may be used to simplify the configuration of a Managed Make project
suitable for building an eCos application. The developer creates a new C/C++ Managed Make
project via a New Project wizard and specifies the eCos Executable project type. Following
creation of the project, it is necessary to provide the name of the GCC cross compiler and the
location of the eCos install tree containing the eCos library and header files to be used within the
project. These parameters are specified using project macros and may have different values for
Debug and Release configurations if required. The name of the GCC cross compiler must be
provided separately to allow CDT to index the project using header files provided by the compiler.
Such indexing occurs outside the context of code compilation.

Once the project has been configured correctly, application source files are added to the project
and edited as required. In the case of the networked appliance under discussion, this will include
handler functions for the various HTTP requests that are used to navigate image directories and
serve thumbnail images. The application code may be compiled and linked against the eCos library
on demand. The build system refers to compiler and linker options defined in the eCos install tree
to ensure that application code is built in an appropriate manner for the intended target hardware.
Any errors and warnings issued by the compiler are recognised by CDT and are used to generate
a problem list and to provide annotations in the source code editor.

Application Debugging

Debugging using CDT is achieved by creating a debug configuration that links a project and a
generated executable file within the project with launch parameters including the name of the GDB
tool and the I/O port to be used for communication with the remote hardware. A debug session
may then be launched with reference to this debug configuration. On launch of a debug session,
the executable code is downloaded to the remote target and CDT switches to an alternative
arrangement of views within the Eclipse workbench that is more appropriate for the manipulation

– 5 –

and monitoring of target state (figure 2). Breakpoints may be specified at the source code level.
Variables, registers and memory regions may be monitored as the developer steps through code at
the source code level or machine instruction level. Diagnostic output from the application is passed
up the debug channel and presented within the CDT user interface by default.

Debugging may reveal issues that must be addressed in the eCos configuration. For example, a
diagnostic message indicating that the TCP/IP stack is unable to allocate sufficient memory from
its own memory pool may be observed. The eCos configuration would then be modified to increase
the size of this memory pool (CYGPKG_NET_MEMPOOL_SIZE).

Configuration optimisation

Following debugging and the successful execution of the application code, further optimisation of
the underlying eCos configuration is usually possible. It should now be clear precisely which pieces
of functionality are required by the application and which can be discarded. In the case of the
networked appliance used as an example, several eCos packages that form part of the default
template on which the eCos configuration is based are not required and may be removed:

Unused eCos package name Description

CYGPKG_IO_SERIAL Generic serial I/O support

CYGPKG_LIBC_SETJMP ISO C library non-local jumps

CYGPKG_LIBC_SIGNALS ISO C library signals

CYGPKG_LIBM Math library

CYGPKG_IO_WALLCLOCK Wallclock I/O support

Further optimisation involves navigating through the remaining nodes of the configuration tree
presented by the eCos Configuration Tool and making appropriate adjustments. Some examples of
the optimisations that may be employed for this application include disabling the HTTP server's
system monitor (CYGPKG_HTTPD_MONITOR), disabling the Zlib stdio utility functions
(CYGFUN_COMPRESS_ZLIB_GZIO), disabling diagnostic support within the generic Ethernet
support package (CYGDBG_IO_ETH_DRIVERS_DEBUG) and disabling the long long variants of
utility functions within the C library (CYGFUN_LIBC_STDLIB_CONV_LONGLONG).

By optimising the eCos configuration in this way, a 46kB reduction in compiler-optimised code size
may be realised for the example application. Further optimisation is possible by examining the
available eCos configuration options in more detail.

Following eCos configuration optimisation and re-testing, eCos assertion and tracing support
should be disabled and compiler optimisation re-enabled. Finally, it is advisable to build the eCos
test suite against the optimised eCos library and execute all tests using the test execution facility of
the eCos Configuration Tool to verify correct behaviour.

Application deployment

Once an optimised build of an eCos application is running correctly from RAM, the eCos
configuration may be modified to allow for booting directly from Flash memory
(CYG_HAL_STARTUP). Configuring eCos for ROM startup results in the following changes:

● An alternative linker script is selected that places the code in Flash memory
● Machine initialisation code is introduced in the hardware abstraction layer to eliminate any

dependency on a bootloader
● Startup code is introduced to copy pre-initialised static data into RAM for subsequent

modification by the application
● Diagnostic output is redirected to a serial port

When the application is rebuilt against the revised eCos configuration, the resulting application
image is of a form suitable for programming into the base of Flash memory for immediate

– 6 –

execution on system reset. A version of RedBoot executing from RAM may be used to download
the application image into RAM and then write it to Flash, replacing the Flash-resident bootloader
or GDB stub.

An alternative deployment option involves using RedBoot to write a version of the application
image intended for RAM startup into an uncommitted region of Flash. RedBoot may then be
configured to copy the application image from Flash back into RAM and execute it at system reset.
This may be achieved by defining a RedBoot boot script. An advantage of this approach is that it
allows for in-field updating of the application and/or associated data by attaching a terminal to the
board and using it to disable the boot script. RedBoot may also provide power-on self test (POST)
functionality where appropriate.

DISCUSSION

This paper has illustrated the steps involved in working with eCos from the perspective of an
embedded application developer. The host tools and underlying configuration technology
employed by eCos allow the developer to comprehend the large number of configurable options
provided within the operating system source code. The developer is therefore able to customise
the operating system to precise application requirements and achieve optimised use of available
hardware resources. Multi-threaded applications may be readily deployed from Flash on hardware
platforms featuring as little as 32kB RAM using these techniques. Where more memory is
available, RedBoot bootstrap and debug firmware may be deployed for in-field updating of
application and data images.

REFERENCES

[1] http://ecos.sourceware.org
[2] http://www.eclipse.org/cdt
[3] http://www.ecoscentric.com/ecos/eclipse.shtml

Presented at the Embedded World 2007 Conference, Nűrnberg, Germany

Copyright © eCosCentric Limited 2006

– 7 –

http://ecos.sourceware.org/
http://www.ecoscentric.com/ecos/eclipse.shtml
http://www.eclipse.org/cdt

Figure 1. eCos Configuration Tool

– 8 –

Figure 2. CDT debug perspective

– 9 –

