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Abstract

“The freely available open source eCos RTOS is designed to efficiently
operate in both small 32-bit embedded systems where memory is measured

in kilobytes not megabytes, and large systems with multiple protocol
stacks, network services and peripheral devices. In this paper,

we look at the benefits of eCos, such as its size, speed and
configurability, how it achieves them, and how best to exploit these in

your embedded applications.”



Introduction

eCos, the embedded Configurable operating system, started life ten years ago but is now 
one of the most popular embedded real-time operating systems being deployed – CMP’s 
Embedded Systems Programming magazine ranked it in the top ten based on world-wide 
market share.

The main differentiating factors of eCos from its competition that have made it successful are 
fairly obvious: 

• Open Source: eCos is publically available and freely downloadable from its project 
web site http://ecos.sourceware.org 

• Zero cost: There are no licence fees, and no royalties
• Highly configurable: The functionality, sizing, implementation choices, and semantics 

are configurable to an extremely fine grain.

The latter aspect is the central focus of this paper. We shall explore ways in which an eCos-
based system can be configured to be smaller and faster than the well-known alternatives. 
By exploiting eCos’ high degree of configurability, eCos can scale from a from a large SMP 
network processing system, with full BSD TCP/IP stack over Ethernet, DNS, SNMP, flash file 
system, POSIX threads, watchdog, real-time clock, serial drivers, occupying several hundred 
kilobytes, right down to a minimal system, occupying just 1Kb of ROM and less than 600 
bytes of RAM, solely using the eCos configuration system. 

Configurability background

First, it is necessary to explain some of the concepts around the eCos configuration system, 
so as to better understand its capabilities.

Many operating systems incorporate some degree of configurability. However usually this is 
only at quite a coarse grain, such as the incorporation of a network stack, or a whole file 
system, or a compatibility layer. While such flexibility is welcomed in general, it is still ill-
suited to the demands of the embedded systems developer who requires a much greater 
degree of control over the behaviour, speed, complexity and ROM or RAM footprint of their 
application. Coarse-grain control of large high-level modules is insufficient.

Some operating systems give a mirage of configurability by allowing some features to be 
enabled or disabled using special system calls or by setting global variables. However the 
operating system must still retain all the code, and must perform additional run-time 
comparisons to check the values of the configurable settings.

Using a more resource-hungry operating system can result in wasting hundreds or even 
thousands of kilobytes due to either unused code, or code that is unnecessarily complex for 
its intended use. This translates to having to fit more Flash or RAM on the board, or using a 
higher speed processor – factors that can greatly affect both profit margin for the product, 
and the ability to sell it at a competitive price, especially for non-trivial product volumes. 
There is therefore a huge incentive to control the operating system’s resources more 
carefully, and fine-tune them to the specific requirements of the application.

eCos Configuration Architecture

eCos provides a configuration system that allows fine-grained control of specific 
configuration points. The heart of the system is the Component Definition Language (CDL) 
which allows the software within eCos to provide information on and dependencies between 
configuration points.



Configuration points can be at a coarse-grain with Packages. Examples of packages may be 
a TCP/IP networking stack or 16550 serial UART driver. Or at the finest level, they may be 
Options, examples of options being the size of the kernel idle thread’s stack, whether 
assertion support is enabled, or whether a particular C library function is thread-safe. eCos 
presently has literally thousands of options!

To manage the potential complexity of having so many configuration points in the system, 
they are arranged hierarchically, with related options being able to be grouped into 
Components, which may themselves be configuration points. Components may contain 
further components, and are usually then grouped within a package, although components 
can even be set to act as parents to other packages in the displayed hierarchy if this may be 
the most appropriate way to present the grouping of functionality.

Configuration points have a type and a value. The type is usually boolean or data. In the 
case of data, it may a string or a number, and may in turn be constrained to a selection from 
an enumeration, or to a particular numeric range. They may be used to indicate that one or 
more source files need to be compiled if that option is enabled, and not otherwise. Most 
usefully, they can express constraints on other configuration points in the system, so that for 
example thread-safety is only relevant when the eCos kernel thread scheduler is enabled 
within the configuration.

Configuration points usually have descriptions, links to on-line documentation, they may 
indicate abstract properties, override default build rules with make fragments, contain a wide 
variety of expressions (CDL is an extension of a TCL interpreter) and there are many more 
useful properties. Clearly CDL is a very flexible and powerful tool for managing the 
configuration space.

Developers use the eCos Configuration Tool to navigate the options within its easy-to-use 
graphical interface (a command-line based tool is also available). When saving the 
configuration, the tool generates a set of C header files which contain C preprocessor 
defines corresponding to every configuration option that was enabled in the configuration as 
specified by the user.

Using this mechanism, the source files within eCos are able to use simple “#ifdef” or “#if” 
tests to adjust behaviour according to the configuration settings. While this approach is 
simple and familiar to developers, it is nevertheless flexible enough to fulfil the requirements 
of most configuration options.1

Each configuration point has an associated macro name used for evaluating the presence 
(tested with “#ifdef”) or value (referenced with “#if” or just by direct use) of the configuration 
data. This flexibility is not limited to C and C++ source files, but is readily usable in assembler 
source files and linker scripts, or indeed any file capable of being preprocessed.

As well as generating these C header files when saving, the Configuration Tool will generate 
a directory tree structure with makefiles to allow the chosen configuration of eCos to be built, 
either within the graphical tool or on the command-line. The result of compiling eCos within 
this build tree is a new tree, the install tree, which includes header files, a library and some 
support object files, as well as a linker script. 

The application may then reference the eCos APIs supplied by the header files and use the 
linker script to generate their final application. The linker script automatically causes the 
relevant libraries and support object files to be employed in the link.

1 There are some example of configuration points in eCos which have more demanding requirements 
in terms of the effect they have on the rest of the system. For those, it is possible to exploit CDL’s 
flexibility as a scripting language, and by using custom make rules associated with the option.



eCos contains a large test suite containing hundreds of test programs, each program testing 
a wide range of functionality. As well as building eCos, the developer can build the test suite 
that goes along with that configuration. Not every test is built – only those potentially 
applicable to the chosen configuration. And for those tests that are built, each test can adjust 
what it tests and the expected behaviour in response to the settings in the configuration. This 
means that the developer can generate a test suite that is specific to their configuration, and 
can be used to validate the choices in the configuration and verify it works as expected.

Size efficiencies in the eCos design

From the outset of its design, eCos has adopted general principles which inherently improve 
the resource footprint.

The first and most obvious one results from eCos being open source, permitting the 
complete elimination of unused code and data using the C preprocessor as described earlier. 
A closed source binary-only operating system can never achieve the same savings, although 
nothing in eCos prevents the use of binary-only packages if they were still required, for 
example due to licensing constraints.

Perhaps the next greatest contributor to resource footprint minimisation is the design 
principle of linking the application and eCos operating system together into a single image. 
This approach is significantly different from most other operating systems, where the 
operating system kernel is a single monolithic image, forming an executive under which the 
separately linked application may be run.

Instead, by linking the application and eCos together, unused code files within the eCos 
libraries that are not (directly or indirectly) referenced by the application are simply never 
included in the final image using the well-known principles of library linking.

Furthermore, eCos exploits a feature in the GNU compiler and linker that was originally 
written specifically for eCos called linker garbage collection, sometimes known as selective 
linking. Linker GC takes the principles of library linking further using properties of ELF 
sections to ensure that not only are unused object files within libraries ignored in the final 
image, but that even for those object files that are referenced, any unused functions and data 
within them can be discarded.

eCos allows these benefits to be extended to the application itself as well. To allow a module 
to have linker GC operate on it, it should be compiled with the “-ffunction-sections 
-fdata-sections” flags to GCC. When linking the application, to indicate that the linker should 
perform a garbage collection pass GCC must be passed the flag “-Wl,--gc-sections”.

Finally, eCos was designed from the outset to support eXecute In Place (XIP) allowing code 
to run directly from Flash or other directly addressable ROM, without needing to be copied to 
RAM first. Efficient design of Flash drivers ensures that even Flash erase and write 
operations need not interfere with the ability to run XIP as long as it does not directly affect 
the running image.

Speed efficiencies in the eCos design

A secondary benefit of fully linking applications and the eCos operating system is that there 
is no longer any real user-mode/system-mode divide. Instead system calls are now 
straightforward function calls, with a consequent significant reduction in overhead. Moreover, 
on processors with MMUs, making these “system calls” no longer requires any potentially 
expensive page table switching.



eCos has also been designed from the outset to have improved real-time response 
compared to many other real-time systems, by separating the interrupt handling sequence 
into multiple stages. 

Interrupts are initially handled by a low level assembler routine termed a “Vectored Service 
Routine” (VSR) that is specific to the Hardware Abstraction Layer (HAL) for the architecture. 
Unless overridden by the developer, this will decode the interrupt source and call a C 
function previously registered as the Interrupt Service Routine (ISR) for the interrupt. This 
routine is usually executed with global interrupts disabled, although some architectures do 
provide for nesting of interrupts, permitting higher priority interrupts to interrupt lower priority 
ISRs. This approach will be familiar to most embedded developers from other operating 
systems.

But while it’s possible to handle the interrupt fully within the ISR, eCos allows for part of the 
interrupt handling to be processed in a “Deferred Service Routine” (DSR). This part of the 
interrupt handling sequence runs with global interrupts enabled. This ensures that ISRs can 
still handle events from potentially higher priority sources. DSRs do not pre-empt each other 
and are simply run in sequence, although if a single source generates multiple interrupts, its 
DSR need only be called once. Unlike ISRS, DSRs can perform operations like wake up 
threads waiting on kernel synchronisation objects.

In some cases, there are four levels of interrupt handling in total. An example of this in eCos 
is RX packet interrupt handling in the BSD network stack port. The HAL’s default interrupt 
VSR will handle the low level aspects, calling an ISR, which will in turn request that its 
associated DSR be called. That DSR wakes up a helper thread which will push the packet 
into the bottom of the network stack, and it will be in that thread’s context that most of the 
network stack processing itself (defragmentation, TCP/UDP protocol handling, routing, etc.) 
occurs. This helper thread does not need to run at high priority – the priority is in fact 
configurable – and so unlike many network stack implementations, the internal processing of 
the network stack can be pre-empted by higher priority application threads as needed. This 
ensures a greatly improved real-time response.

This design principle has been adopted across the eCos device driver implementations, 
namely that as much as possible of the interrupt processing and device handling is 
performed with global interrupts enabled. Furthermore, where possible it is done in the 
context of the thread which requested the driver operation, or failing that a helper thread, in 
order to ensure real-time behaviour. This then guarantees high priority to those threads that 
need it. Many other operating systems have a “single-threaded” kernel where once a system 
call is made, all pre-emption is impossible until the system call completes and returns from 
the system mode to user mode.

Keeping the code size down

Despite the inherent design features of eCos to minimise code and RAM usage, there is only 
so much that these techniques can achieve, even when features like selective linking are 
removing unused code and data. Instead eCos allows the developer to fine-tune the 
operating system configuration to fit perfectly with the requirements of the application.

There are various techniques that can be used to determine what can be trimmed. The 
easiest and most logical approach is to examine the eCos configuration with a hierarchical 
top-down approach where the developer removes unnecessary features from the 
configuration. First the developer can remove whole packages that are not used by the 
application. Then individual components, and then options within the remaining packages 
can be similarly analysed and treated, either being disabled entirely, or in the case of non-
boolean options, having their values adjusted. The hierarchical display of the eCos 
Configuration Tool makes it well suited to the task of analysing the configuration. 



Documentation for each option is displayed in the Configuration Tool and clarifies the impact 
the option has on program operation.

However the wealth of configuration options can make verifying the selection of each 
configuration option daunting. There are other techniques that can assist the developer in 
finding where resources are going, and therefore where the focus for streamlining the 
configuration should be.

The most useful tool to analyse code and data use is the ability of the development tools to 
generate a linker map. This file can be generated by the linker by passing GCC the flag “-Wl
,--Map,mapfile” where “mapfile” is the file name to use for the linker map. The linker map 
contains a precise list of what functions and data were incorporated by the linker into the 
program, their precise footprints, and what object files were used, which in the case of eCos 
are named conveniently to quickly identify which package they originated from. It also gives 
dependency information to show not just that a function was pulled in to the program image, 
but from where it was referenced that caused it to be pulled in. Note that some of the 
generated information is only identifiable if selective linking is used, but that is the default for 
eCos.

For example, the developer may be using JFFS2, the Journalling Flash File System, in their 
configuration, and may notice that various routines from the zlib package are being used to 
support built-in compression and decompression. The developer knows that his or her 
application does not want or need this ability. The linker map file can identify that the JFFS2 
package was the reason for the use of zlib, and the configuration option enabling built-in 
support for compression in JFFS2 can then be quickly identified and disabled, eliminating the 
dependency. An alternative approach may have been to have scanned the packages loaded 
in the configuration, notice the unnecessary presence of zlib, and remove it from the 
configuration. At that point the configuration tool would detect a conflict due to the constraints 
expressed in the JFFS2 CDL, indicate to the user that JFFS2 is presently configured to use 
compression, and automatically suggest disabling the option controlling compression within 
JFFS2.

Perhaps in some cases it may not be clear what option needs to be adjusted to remove the 
dependencies, but the configuration tool allows the developer to examine an option and see 
not only what constraints it has on other CDL properties, but what other options have 
constraints on it. In the very worst case, as eCos is open source, the module could be 
identified from the linker map and the source file examined to determine if there are any 
options that may remove the dependency.

A good example of where the dependency may be hidden is with the printf() and scanf() 
family of functions. The default implementation conforms to the ISO standard, allowing use of 
floating point format specifiers. But these result in a large body of code being included, both 
in the printf()/scanf() functions themselves, but also as a result of functions from the floating 
point math library needing to be called to support them. Furthermore, on CPUs with no FPU 
fitted, floating point operations must be emulated requiring several more kilobytes of code. 
This may be entirely needless when a developer is fully aware they never intend to display 
floating point using these functions, just print occasional text output, possibly only for 
diagnostics. 

Some embedded systems provide non-standard functions like iprintf() which is an integer-
only printf. However, being non-standard, all callers need to use it. If just one caller does not, 
then the situation is worse as there is now both the full printf() implementation and the 
iprintf() implementation in the program image. Guaranteeing exclusive use of iprintf() can be 
tedious especially when reusing existing code from elsewhere, which is something good 
software engineers should be seeking to maximise.



Instead eCos provides a configuration option to disable floating point support within printf() 
and scanf(). This allows existing code to work without change. This is not the only case of 
code where the underlying implementation can be streamlined, even though the visible API 
remains the same. For example, it is worth examining the ISO C and math libraries’ 
configuration for functions that can be configured for thread-safe behaviour. The developer 
may be aware that the functions are only ever called from one thread, or one thread at once.

Think of the alternatives

Sometimes it may not be a straightforward case of adjusting the configuration options visibly 
presented. An eCos developer needs to be aware of what alternative implementations exist 
within eCos.

A good example of this is TCP/IP networking stacks, where there is a fully featured network 
stack derived from the FreeBSD project. The BSD stacks are well known for their 
performance, reliability and standards conformance. They have been well tested and 
designed for maximum throughput. However the stack is very resource hungry. All the packet 
buffer pools and other buffers are configurable values, although reducing these will affect the 
performance of the stack. Below a certain point the developer will need to be aware of 
exactly what the network activity and demand is likely to be, otherwise there is the risk of the 
stack dropping packets simply due to insufficient buffer capacity. But there is not much that 
can be done to reduce the code footprint, other than disabling IPv6 if it is not to be used.

Instead eCos was designed with a plug-in network stack infrastructure, and it is possible to 
use alternative TCP/IP implementations. In particular, there is a port of Adam Dunkel’s 
lightweight IP (lwIP) stack. This stack was designed from the outset for embedded systems, 
and while not as featureful as the larger BSD implementation, is capable of fulfilling most 
developer’s requirements using a greatly reduced footprint, while still maintaining the use of 
the well known BSD socket API.

A second example where it is possible to get away with a simpler implementation of
the same functionality is signals. eCos provides a POSIX compatibility package, which 
includes fully POSIX compliant support for signals, signal handling, signal actions, masks 
and synchronization with POSIX threads. But it may be that the developer only wishes to use 
signals in a simple way, and is content to do so from standard eCos threads instead of 
POSIX threads. In this scenario, a developer can remove the POSIX package from their 
configuration and replace it with a much simpler signal handling mechanism provided by a 
different eCos package which implements signals only to the level of compliance of the ISO 
C standard, rather than the much more heavyweight POSIX standard.

There are numerous other examples in eCos where different implementations with different 
size versus speed versus functionality trade-offs can be chosen.

Reducing code size in the toolchain

There are other steps that can be taken to reduce code size other than by adjustment of the 
eCos configuration. Most obviously, compiler optimisation should be enabled for both eCos 
and the application linked against it. Although there are a wealth of compiler optimisations, 
taking the broad brush approach, compiling with “-O2” will produce a good compromise of 
small optimised code. Optimisation levels of 3 and above will tend to increase code size. But 
in addition, appending “-Os” will make further optimisation changes that will reduce the space 
usage of the program, albeit possibly at the expense of performance. eCos itself defaults to 
building with just “-O2”. 

We have already mentioned the benefits of linker GC, and the developer should remember to 
supply the necessary flags on their own application’s compile and link lines.



C++ users should ensure that C++ exceptions, and run-time type identification (RTTI) are 
disabled if unused as these will increase code (and data) use. The compiler flags 
“-fno-exceptions -fno-rtti” may be used for this.

Finally, there is one special case worth of note: for those using the ARM architecture, most 
ARM chips in use today support Thumb instructions, which occupy 16-bits instead of 32-bits. 
The resulting code may occasionally take more instructions as the instruction set is less 
powerful, but the greater code density will reduce the overall code footprint. eCos itself can 
be built in Thumb mode, and this can be readily achieved by changing just a single 
configuration option.

Reducing the RAM footprint

The first step to reducing the RAM footprint is largely to adopt most of the techniques in the 
previous chapter to reduce the code size. By removing code modules, the RAM footprint is 
also likely to diminish. Furthermore, examination of the linker script works equally well for 
data as code.

Many eCos device drivers, as well as the networking stack, use buffers with sizes that can be 
set in the configuration. Buffer size can be traded off against performance depending on the 
expected usage and throughput. Again choosing lwIP over the BSD stack will allow the 
developer to configure a reduced buffer size. lwIP can perform better when buffer sizes are 
smaller, due to having been designed from the outset for embedded systems.

But one key contributor to RAM usage in an RTOS is the thread stacks. It can be difficult to 
determine the maximum possible stack use by a thread so that stack has not been allocated 
unnecessarily. Fortunately, eCos provides some assistance in determining a good choice of 
thread stack size.

The eCos kernel contains a configuration option which, when enabled, will allow the stack 
use by each thread to be measured. The maximum amount of stack used can then be 
obtained either by calling a kernel API function for a particular thread, or by enabling a further 
option allowing the stack usage to be printed on the console when the thread terminates.

However some further input from the developer is still required as the kernel by itself cannot 
guarantee that every thread reaches the most stack hungry part of its execution path. 
Experienced developers will have a good insight as to which code path that should involve, 
and create the conditions for that code path to be followed. Subsequently the stack use can 
be measured.

There are additional factors to account for, beyond the measured stack use. The most 
important is that there must be additional room  for the CPU context to be saved on the stack 
should there be an interrupt. As this may include a clock interrupt for a timeslice, this is easily 
possible. The HAL defines a structure named HAL_Saved_Registers in the hal_arch.h 
header file which is used to hold the CPU context. Room must be left for this structure on the 
stack. Indeed the size of that structure may be affected by the configuration. For example, 
some HALs can be configured to not save or restore the floating point registers. This allows 
these elements within the saved context structure to be omitted resulting in lower stack use. 
The fact they do not have to be saved or restored will also reduce context switch time and 
interrupt latency.

By default, when handling an interrupt, eCos will switch to a separate “interrupt stack” before 
executing ISRs and DSRs. This is so that space does not have to be reserved on each 
individual thread stack to allow for the possibility of running ISRs and DSRs, and thus makes 
thread stack use more deterministic. Use of the interrupt stack can be disabled as it does 



slightly increase interrupt latency. The size of the interrupt stack is also configurable, and it 
should be large enough to execute the most stack hungry DSR as well as the most stack 
hungry ISR simultaneously. Fortunately since ISRs and DSRs are meant to be short, this is 
usually easy to determine.

Code in eCos sources may also create threads, each of which will obviously require a stack. 
The stack sizes can be set in the configuration, and the defaults are generally very 
conservative giving ample opportunity for a developer to reduce RAM footprint. Examples of 
system threads include the aforementioned BSD network stack helper thread used for the 
bulk of received packet and time-out handling, the kernel idle thread which is the lowest 
priority thread in the system, and threads used to provide network services such as an 
SNMP agent, TFTP server, HTTP server and so on.

Improving performance

Although we have already mentioned a number of ways in which it is possible to configure 
eCos for greater performance, such as disabling HAL floating point support, ensuring 
compiler optimisation is enabled, or choosing the BSD network stack over the lwIP network 
stack, there are a few other aspects worth covering that may aid developers looking for a 
performance boost.

One first step is to follow the suggestions in the preceding sections to reduce the code and 
data footprints. In many cases extra unnecessary features enabled in the configuration will 
result in extra code having to run to support those features, even if the features are 
themselves never used.

An obvious example is kernel timeslicing support. If timeslicing is enabled, this will result in 
the kernel clock interrupt handler needing to check if a new thread needs to be scheduled. 
However if the application will never create threads of the same priority, and as eCos is a 
real-time system, then in that scenario no thread can ever timeslice another. In that case, 
timeslicing may as well be disabled, resulting in reduced clock interrupt handling time. In fact, 
it would probably be desirable to select the bitmap scheduler implementation instead of the 
default multi-level queue based scheduler implementation. The bitmap scheduler is much 
simpler, smaller and faster but does not support threads of identical priority.

One further reason why reducing code and data footprint can be beneficial is because 
unused code and data may fill cache lines in the instruction cache or data cache, resulting in 
increased cache misses. By eliminating unused code, the used code is more likely to occupy 
the same cache line, i.e. increased cache locality. The overall effect will probably not be 
significant but may be non-trivial. Using higher levels of compiler optimisation in GCC such 
as -O3 can be tempting and will usually be beneficial, but there is a risk that performance 
may even be reduced, because at -O3 and higher, the compiler unrolls loops and performs 
automatic function inlining. Both these optimisations carry the risk of decreasing cache 
locality, unless using advanced features such as profile-directed optimisation as described 
below.

Cache locality can also be increased by using smaller instructions, such as ARM Thumb 
mode. The instruction set may be less powerful, but depending on the size of the inner loops 
in the program, the greater code density of Thumb mode on ARM may result in increased 
cache hits.

Certainly use of Thumb mode may be significantly faster than ARM mode if running directly 
(XIP) from a slow Flash or ROM. Whether it will be faster will depend on hardware properties 
such as the number of wait states, cache size, and the access width. If the access width is 
only 8-bits, it is highly likely that Thumb mode will be faster. Again, the value of eCos being 
highly portable and configurable is shown as switching eCos to Thumb mode requires 



changing a single configuration option.

Another solution for poor performance when running code from a slow memory device is not 
to run XIP at all if sufficient RAM capacity is available. RAM is almost always faster. eCos 
terms this “ROMRAM” startup as the program is compiled for ROM but relocates itself to 
RAM at the very beginning of the boot sequence.

The classic approach to identifying regions of the program which would benefit from closer 
analysis for performance is to use a profiler. The public version of eCos supports timer-based 
profiling using the GNU profiler, gprof. Samples  of the program counter are taken by a high 
frequency timer interrupt handler, allowing a statistical analysis of where the program spends 
its time to be built up.

More useful is the improved gprof support found in eCosCentric’s enhanced version of eCos 
called eCosPro. This allows basic block profiling, which is more accurate than timer-based 
profiling. 

The data from the gprof support package within eCos can be uploaded to the host and then 
be analysed to identify areas where attention should be focussed for performance 
improvements.

Recent versions of the GNU compiler also support profile-directed compiler optimisations. 
The profiling data can be used to optimise code in two significant ways: branch prediction, so 
that in the common case a branch is not taken, which improves instruction cache hits from 
the current cache line; and for directing inlining, to determine when automatic inlining may or 
may not be beneficial at -O3 and above. As indicated earlier, inlining at -O3 may be 
detrimental to performance if it results in increased cache misses in the commonly executed 
case.

Conclusion

We have touched on many aspects of how eCos is able to avoid the overheads suffered by 
most alternative operating systems. The key advantage of eCos is the power of its unique 
configuration system. eCos can be configured to precisely fit the requirements of the 
application and no more. It is feature-rich, yet does not have to pay a penalty if the features 
are not used. Above all, it puts embedded developers in control.

Embedded developers want control over the code running in the products and loathe 
unnecessary bloat. Many would prefer to reinvent the wheel and write their own basic OS, 
rather than trust a traditional closed source operating system with little visibility; or even if the 
source is available, it may be too complex to work out how to customise it for the 
application’s requirements. With eCos there is no longer a reason to do this as the developer 
can maintain full control and visibility of the code, while also being able to control 
configuration choices in a simple way.

There are some disadvantages to the large degree of configurability: when talking to our 
customers we are often asked what eCos’ memory footprint is, or its interrupt latency, to 
which the answer can only be that it depends! But you can be confident that eCos is 
designed to provide precisely what your application needs.

The author is Chief Maintainer of eCos, and Chief Development Engineer at eCosCentric,  
the leading supplier of consultancy, training, development and support services for eCos.
http://www.eCosCentric.com/




