SWELL

software

Product Brief

© Copyright 2005

Swell Software, Inc.

(810) 982-5955
Fax: (810) 982-5949

www.swellsoftware.com

All rights reserved.

The C/PEG (Portable Embedded GUI) library is a professional quality graphical
user interface library created to meet the needs of embedded systems
developers. Unlike the alternatives, C/PEG is small, fast, and easily ported to
virtually any hardware configuration capable of supporting graphical output.
C/PEG also delivers exceptional visual appeal and an intuitive and powerful API
for application-level user interface development.

C/PEG simply provides the most complete GUI solution available to real-time
embedded systems developers. All of the utilities, documentation, support, and
development tools you will require for creating a graphical user interface on an
embedded system are included with the C/PEG library development package.

C/PEG is not an operating system, but instead is designed from the ground up to
work seamlessly in a real-time multitasking environment. C/PEG allows you to
choose the real-time operating system which best meets your needs and
provides the tools, API, and class library that will allow you to quickly create an
outstanding graphical presentation.

C/PEG is licensed on a per-developed-product basis, eliminating royalty fees.
C/PEG is delivered with full source code, many example application programs, a
complete set of supporting utility programs, hardware interface objects for
several common video configurations and input devices, and very thorough
documentation to simplify the integration process.

Programming Model

The C/PEG library is written entirely in C and implements an event-driven
programming paradigm at the application level. The event-driven paradigm has
proven to be a superior method for creating user interface software, providing
structure and order to the otherwise difficult task of responding to external
system events arriving asynchronously from many sources. This programming
model has the added benefit of being easily integrated into real-time multitasking
environments.

Reduced Size

C/PEG achieves a small footprint through several means, including heavy
reliance on C inheritance to encourage code re-use. Each control type is built
incrementally upon its predecessor, allowing you to select and use only the
objects which meet your requirements without forcing you to carry along any
unneeded baggage. In addition, C/PEG is written with the embedded market
firmly in mind, meaning that the value of every feature is weighed against the
code size and performance requirements of that feature.

In addition the C/PEG library is configured at compile time to include only the
features your application requires. A large set of configuration flags allow you to
completely define the set of input devices, drawing primitives, and many higher
level features that your target will require. This configuration capability allows
you to remove at compile time any library features that your application does not
require, in essence allowing you to customize the library to exactly meet your
needs.

Maximum Performance

C/PEG achieves maximum performance by minimizing the system overhead
required to maintain a graphical presentation. This includes support for
advanced window and viewport clipping techniques that prevent unnecessary
screen drawing. In addition, C/PEG always interacts directly with video and input
hardware to achieve the greatest possible throughput.

Highly Portable

C/PEG achieves portability primarily by abstracting all hardware dependent
functionality. The vast majority of the C/PEG library is completely hardware
independent, relying on well-defined hardware interface objects to provide a
consistent, simple, and reliable set of I/O methods. C/PEG applications are
running today on all of the most common embedded processors including x86,
ARM, PowerPC, MIPS, StrongARM, ColdFire, DragonBall, OMAP, BlackFin,
ST3500, and CPU32 based microprocessors.

Portability is further achieved by making no assumptions about the software
environment. OS-specific dependencies are encapsulated and well
documented, allowing users to follow the examples provided to create new
interface classes for any environment. C/PEG further avoids the use of intrinsic
data types and floating point math to eliminate problems associated with CPU
word length differences and the common lack of floating point support

Finally, portability is increased through general conformity to the C standard.
C/PEG does not require support for C exception handling or run-time type
identification and can be compiled in full C compatibility mode. C/PEG is fully
verified with a large set of popular compilers for embedded systems (below).

Flexible and Powerful API

The C/PEG library provides an intuitive and robust object hierarchy. Objects may
be used directly as provided, or enhanced through user derivation. C/PEG
imposes no artificial limits on how objects are used, meaning that the user is free
to design screens with an indefinite nesting level of controls within windows
within other windows. You will find you can do things very quickly and easily with
C/PEG- things that would be very difficult and time-consuming using the
mainstream desktop GUI programming environments.

The default appearance of C/PEG objects is almost identical to the common
desktop graphical environments. This appearance can, of course, be enhanced
or simplified to fit the requirements of the application. In fact users often prefer to
create a user interface with a very custom appearance and no resemblance to
the desktop graphical environments. This is also readily accommodated within
the design of C/PEG.

The C/PEG API is defined entirely by the public functions provided by the library
classes. This API provides robust and intuitive methods for performing even very
complex graphical operations. We encourage you to obtain an evaluation copy of
the library and experiment with C/PEG to insure that the library meets your
project’s requirements.

Real-Time Awareness:

C/PEG is fully integrated with RTOS messaging, memory management, and
synchronization services. This yields the lowest possible overhead and the only
true real-time multi-tasking GUI environment available. C/PEG input devices are
interrupt driven, and again use RTOS services to communicate user input
information to the graphical user interface.

Microsoft Windows Development Environment

Very often during the early stages of an embedded development effort, it is
difficult or impossible to do software testing and debugging on the intended
target platform. For this reason C/PEG provides a set of hardware and OS
encapsulation classes which allow your C/PEG user interface to run as a
standard 32-bit Windows application. You can create, test, and debug your
entire user interface while using the very mature Windows application
development tools. Once your target platform is available, you simply have to
replace the C/PEG interface encapsulation classes with versions provided for
your target.

MS-DOS Development Environment

Building on the above concept, C/PEG also comes complete with interface
classes for running C/PEG as a DOS real-mode, 16-bit protected mode, or 32-bit
flat mode application program. This is often an advantage for users who intend
to use some form of x86 CPU on the final target system. Porting to the final
target is again simply a matter of rebuilding the C/PEG library with 1/O interface
classes designed for your target. Your application level GUI software is
guaranteed to run without modification on the target platform.

X11 Development Environment

Similar in functionality to the Microsoft Windows Development Environment, the
X11 Development Environment allows you to code, test and debug your
application while running your application on the X11 Windowing System. The
added advantage of this environment is that you may be running X11 on top of
the same OS that acts as your embedded OS. This allows you to have a clear

representation of your final application running on it’s target OS while still having
access to all of your desktop tools. Again, porting to your final target is simply a
matter of recompiling the C/PEG library with 1/O interface classes designed for
your target.

C/PEG may be configured to support multiple GUI tasks. These tasks can be of
differing priorities and can each directly create, display, and control any number
of GUI windows or child controls. This advanced capability is unique to the
design of C/PEG. In this configuration, C/PEG protects internal data structures
from corruption through judicial use of semaphores, which again are provided by
the underlying OS. This tasking model has several advantages, the most
significant being that the application level programming is greatly simplified. At
any time any task in the system can directly display a window or any other type
of GUI object and update the information displayed within that object.

Finally, C/PEG can also be run standalone without a multitasking kernel. This
model is most often used in smaller, less complex applications.

The C/PEG library has been fully verified with each of the following compilers:

Compiler Processor

e Analog Devices Visual DSP Blackfin DSP
e ARM Developer Suite Ver. 1.2 All ARM Cores
e ARM RealView (RVCT) Ver. 2.1 All ARM Cores
e Borland C++ x86 real mode

Ver. 4.52, 5.0 x86 protected-mode
e CAD-UL C++ x86 32-bit
e GNU C++ All Unix/Linux environments

Green Hills Multi

All ARM Cores, StrongARM
PowerPC, SH3, MIPS, 68K
PXA, x86, MCORE,
Freescale i.MX

e Hitachi All SH Series

e |AR Workbench All ARM Cores

e MetaWare High C/C++ All ARM Cores,x86 32-bit
All ARC Cores

metroWerks Code\Warrior

Microsoft MSVC++
Ver.1.52, 5.0, and 6.0, .Net
Paradigm

All ARM Cores, 68K, MCORE
Coldfire, DragonBall, PowerPC
Freescale i.MX

x86 real-mode

x86 protected-mode.

All x86 Targets

e Sybase (Watcom) C++ x86 real-mode
x86 32-bit protected mode

e ST Microelectronics All ST series
e Tasking for C167
e Texas Instruments Code Composer All TI Cores

Pointing Device

C/PEG includes complete support for mouse, joystick, and/or touch screen input.
This includes drawing various pointer bitmaps or using hardware cursor
capabilities. Complete mouse input drivers and touch screen input drivers are
provided for each of the reference platforms. All pointer input functionality can
also be removed from the library simply by turning off a library configuration flag
prior to compiling the library.

When operating with a touch screen, C/PEG can be configured to eliminate
drawing of the mouse pointer and can also be configured not to highlight the
object that has input focus. These options further reduce code size and drawing
overhead when running with touch screen input. When running with a touch
screen C/PEG also eliminates the need for “pointer move” messages and thus
all operations and controls work normally with only touch and release input
messages. This feature simplifies touch screen input driver development.

Keyboard/Keypad

Full keyboard support is optionally included in the C/PEG library. This includes
all handling required for keyboard navigation through menus, windows, and
dialogs. Keyboard support may range from a full QWERTY keyboard to a small
set of user-defined membrane keys. Full navigation and operation can be
accomplished with as few as three unique input keys.

Soft Keys

Using soft keys, i.e. membrane keys placed at the perimeter of the display
screen, is also supported. When using soft keys, the system programmer
configures C/PEG to operate as with a touch screen, and sends to C/PEG touch-
screen click messages corresponding to the screen position adjacent to each
membrane key.

C/PEG provides industry leading support for multi-lingual applications. C/PEG
fully supports two-byte characters and Unicode string encoding. Our
CompositeFont technology provides an industry-leading solution for
incorporating even very large character sets in memory-limited embedded
systems. Virtually any language can be supported using any combination of
character sets including Latin, Cyrillic, Han, Katakana, Hiragana, etc., in a single
C/PEG application. This capablity gives the system developer unequaled range
and flexibility in designing products for foreign markets.

The C/PEG library provides a full complement of compiler-independent ‘C’ string
library functions, eliminating the need for any special non-ANSI compiler support
for 2-byte characters.

C/PEG also provides complete string table editing and maintenance capabilities.
System developers use this feature to enter and edit all strings for all supported
languages. The C/PEG String Table Editor allows you to edit a string in any
language using only a mouse or Latin (ASCII) keyboard. SJIS and Unicode
data entry formats are also supported. The String Table Editor exports your
system strings in a unique source file while at the same time mapping each
string to the character set or character sets you have specified for you target
system.

C/PEG supports a rich and growing compliment of GUI object types including:

e PegAnimationWindow
e PegBitmap

e PegBitmapButton

e PegBitmapConvert

e PegBitmapLight

e PegButton

e PegCapture

e PegChart

e PegCheckBox

e PegCircularBitmapDial
e PegCircularDial

e PegColor

e PegColorLight

e PegComboBox

e PegDecoratedButton

e PegDecoratedWindow
e PegDial

e PegDialog

o PegEditBox

o PegEditField

e PegFileDialog

¢ PegFiniteDial

¢ PegFiniteBitmapDial

e PegFont

e PegGroup

e PegGifConvert

e PegHorizontalScrollBar
e PegHorizontalList

e Pegicon

e PeglmageConvert

e PegJpgConvert

e PegLight

e PegLinearScale

e PegLinearBitmapScale
e PegLineChart

e PegList

e PegMenu

e PegMenuBar

e PegMenuButton

e PegMenuDescription

PegMessageQueue
PegMessageWindow
PegMLMessageWindow
PegMLTextButton
PegMultiLineChart
PegNotebook
PegPresentationManager
PegPngConvert
PegPoint
PegProgressBar
PegProgressWindow
PegPrompt
PegQuant
PegRadioButton
PegRect

PegScale

PegScreen

PegScroll
PegScrollinfo
PegSlider
PegSpinButton
PegSpreadSheet
PegStatusBar
PegStripChart
PegTable
PegTextBox
PegTextButton
PegTextThing
PegThing

PegTimer

PegTitle

PegToolBar
PegToolBarPanel
PegTreeNode
PegTreeView
PegVertList
PegVerticalPrompt
PegVerticalScrollBar
PegWindow
PegZip/PegUnzip
Peg2DPolygon

Overview

C/PEG is designed work with and take full advantage a broad range of video
output devices and display screens. C/PEG can be configured for monochrome,
4 grays, 16 grays, 16 colors, 256 colors (in palette or packed formats), 65K
colors (in 5:5:5 or 5:6:5 formats), true 24-bit RGB, and 32-bit RGB-Alpha color
output encoding. Further, the output color depth may be defined at compile time
(producing the smallest code) or at run time (allowing the video output device to
be determined during system initialization).

A full range of VGA and LCD display devices are supported, including LCD
devices of unique x-y resolutions or orientations. The design of the C/PEG
display drivers enables common resolutions such as 640x480 VGA or 320x240
LCD screens to be handled in an identical manner as very unique or very small
x-y pixel resolutions.

All C/PEG screen interface operations are performed by a library class named
PegScreen. This class defines the drawing primitives and other operations that
are available in every C/PEG system, regardless of display type or video
controller in use. Specific derived versions of PegScreen are then provided for
each color depth, resolution, and video controller.

Hardware Acceleration

C/PEG takes full advantage of video controllers which support hardware
acceleration capabilities such as hardware cursor or hardware bit-blit. These
capabilities are always provided in the display driver software, via software
emulation when the target controller does not provide a specific feature directly
in hardware. When hardware acceleration is available, a small set of functions in
the display driver are reduced to take advantage of the video hardware
acceleration.

Double-Buffering

Double-buffered video output is optionally supported in every C/PEG
configuration. This configuration allows all intermediate drawing operations to be
performed to an off-screen or local memory buffer. At the conclusion of a
drawing operation, the invalidated region of the local memory buffer is
transferred to the visible video memory, using hardware bit-blitting if provided.
This mode of operation provides flicker-free animation and scrolling. Double-
buffered output, while always supported, is not required. C/PEG can also be
configured to do all drawing directly to visible video memory.

Fonts

C/PEG supports an unlimited number and style of fonts. Fonts can be basic
binary, outlined, or anti-aliased format. Users can produce any number of
custom fonts using the PEG Development Toolkit.

Graphics

C/PEG provides advanced facilities for display of bmp, png, jpg, and gif
formatted images. The capabilities are completely ROMable and can be used
on any embedded system.

Screen Driver Templates

A full set of screen driver templates are provided for 1-bpp (monochrome)
through 24-bpp (TrueColor RGB) video output. These template drivers are
designed to work with any CPU architecture that supports direct, linear access to
the video memory buffer.

The screen driver templates are capable of supporting any screen resolution
from 1 x 1 to 65535 x 65535 pixels.

Accelerated Screen Drivers

Many embedded controllers such as the Elan, ARM, and PowerPC CPUs
provide integrated video control functionality with limited acceleration features.
These controllers work best using one of the template drivers listed above.

On the other hand, several popular external video controllers are also applied to
embedded applications where higher performance is required. PegScreen driver
classes tuned to take advantage of the hardware acceleration features of many
of these external video controllers are also available. Customized driver classes
are currently available for the following video controllers:

- Advanced Micro Devices — Geode processor, Elan
- ATI - Rage Mobility, Mobility Radeon
- All ARM Cores- including ARM7/ARM9, Samsung, Thumb Mode
« Cirrus Logic — GD5430, 71110, 7212, 7312
« Epson-S1D13300, S1D13503, S1D13504, S1D13505, S1D13506, S1D13704, S1D13705,
S1D13706, S1D13806, S1D13A04/S1D13A05, SPC8106 VGA LCD/CRT Controller
Freescale- i.MX1 and i.MXL, i.MX21, PowerPC 823/860
Fujitsu-Orchid, Scarlet
3Dlabs- Permedia ll
Intel — PXA 250/255
Linux - Linux Framebuffer Device
Linux, Solaris, NetBSD, Lynx OS -X11 Windows
Chips & Technology - CT545 Alpine, CT65550, CT69000/69030
MediaQ - MQ200 & MQ400
Philips- Trimedia
Sharp LH Series Controllers - LH79531, LH77790, LH79520 256 color, LH79524, LH75401,
LH7A400
« Silicon Motion — Lynx 3DM, LynxEM+, SM501
« ST Microelectronics — STV3500
« Topro — TP6508 controller
+ Texas Instruments — OMAP, DM270, DM320 DSP color (for RSA environment)
- X86 Standard VGA
« X86 VESA Extended Modes

10

Custom PegScreen drivers for additional video controllers are available on
request.

Development Environment Screen Drivers

As stated above, it is often useful to run C/PEG in a PC development
environment regardless of your final target architecture. This allows software and
hardware development to proceed in parallel, shortening time to market for a
new design. The C/PEG development package always ships with the following
PegScreen driver classes to facilitate this type of concurrent development:

e Generic VGA- Runs on any PC-compatible in any processor mode.

e Win32- Runs on any PC-compatible running MS Windows 95 or later.
e X11 —Runs on any PC-compatible running X11 R6 including XFree86 3.3.x

11

While C/PEG applications rely primarily on the provided C/PEG class library
objects for window and control drawing, it is often useful to perform custom
drawing at the application level. For this reason all C/PEG drawing primitives
can be invoked at any time by the user’s application level software. The C/PEG

drawing primitives include:

Function Comments
BeginDraw Begins a sequence of drawing operations.
Bitmap Draws a bitmap at the desired location.
BitmapFill Tiles a bitmap to fill a given area.
Capture Captures an area of the screen.
Circle Any color outline or fill, optional fill, any outline width.
CreateBitmap Used to draw offscreen or for animations.
DeleteFont Delete font created with MakeFont.
DrawText Any color, position, font, transparent background or

fill.

Ellipse Any color border or fill, any outline width.
EndDraw Ends a sequence of drawing operations.
GetPointerType Returns mouse pointer type.
GetXRes Display x resolution, in pixels.
GetYRes Display y resolution, in pixels.
HidePointer Removes the mouse pointer from the screen.
Invalidate Only invalid screen regions may be drawn to.
Line Any width, color, orientation.
MakeFont Create bitmapped font from vector font.
PatternLine Any width, color, orientation, pattern.
PlotPoint Any color.
Polygon Outline and/or fill, pattern fill, any outline width.
Rectangle Outline and/or fill, pattern fill, any outline width.
RectangleXOR Performs logical XOR operation with pixels in region.
RectMove Used for scrolling and animation.
ResetPalette Restores default palette.
Restore Restore previously captured screen area.
RestorePointer Restores hidden mouse pointer.
SetPointer Sets mouse pointer position
SetPointerType Sets mouse pointer shape
SetPalette Allow loading custom palette.
TextHeight Returns height of string in current font, in pixels.
TextWidth Returns width of string in current font, in pixels.

All drawing primitives enforce object clipping and viewport validation, thus
preventing run-time address errors due to invalid parameters being passed to

drawing functions.

12

PEG Developers Toolkit

C/PEG is delivered with a full set of utility programs useful for embedded
developers. These utility programs allow you to generate and use your own
fonts, convert and ROM several forms of bitmap images, and design and
automatically generate the source code for your C/PEG windows and dialogs.

FontCapture

C/PEG supports many font formats. These include a custom 1-bit-per-pixel
variable-width bitmapped font format, a scalable vector font format, outlined
fonts, and anti-aliased fonts.

FontCapture is a development tool that allows users to convert TrueType and
BDF font files into the native font format required internally by C/PEG. The
output of FontCapture is a source file containing “C” style data arrays describing
the captured font. These source files are then compiled and linked in with your
application, allowing you to associate any number of custom fonts with any
C/PEG control type that displays string data.

FontCapture includes a complete character editor allowing the user to customize
individual characters of the generated font. Unicode character mapping and
multi-page fonts containing thousands of characters are supported. FontCapture
is available for Windows, Linux/X11, and Solaris hosts.

The image below is a screen shot of the FontCapture utility program.

PEG FontCapture Release 1.96d

IH:"'.peg'I 6N Ltilzforts i harialn,

—I:Iutput Format———— SouceFont————————— —IjharHange-
% Standard " TrueType [Windows] & 7hit ASCH
€ Outlined % TrueType [Mative) ™ Custam

i
W Antidliased dLe
[Binary " PEG Font File
[Add Shace Select. . | Eophiglre |
I Solid —I:Iptimizatinn
I~ Customdzpsct Rat
e Size . . .E . . . | Speed

ImageConvert

Image Convert is a development tool that converts BMP, GIF, JPEG, and PNG
images into a compressed format supported by the PEG+ bitmap functions. The
output of ImageConvert is a ‘C’ source file that can then be compiled and linked
in with your application. ImageConvert will optionally compress the output
bitmaps on an individual basis, allowing you to achieve the best mix of speed vs
size.

Image Convert also creates optimized palettes for applications running in 4 or 8
bpp mode. The user can input any combination of supported image files, and
ImageConvert will perform advanced quantization and color-reduction producing
an optimal palette or palettes corresponding to the input images. The output
images are then automatically re-encoded using the newly generated palette
information. Multiple palettes can be used in one application. ImageConvert
also supports dithering of pixel color data when reducing the color depth of an
input image to match the output display capabilities. The image below is a
screen shot of the ImageConvert utility program.

Input File || Browse.. |
Output File |
—Compression —Dutput Colors———— — Outpuk Format

& BLE ~ Mare ¢ 2 Color [1 bpp) & PegBitmap Source

:: 4 Caler (2 bpp) i~ PegBitmap Binany

—Color Matching Options————

= Fized Drtsugznal Palette {= ;EEEEE::;EEL] Ldnsdisoce

" Generate Optimal Palstte ™ Packed 3:3:2 G eresn Rotation

_Setings. | | | ¢ picolor 15 bpp) & Mane

" User Defined Edi... | ™ Fomat 5:5:5 " 90 Degrees

[T Grayscale I BigEndian 270 Degrees

I™ Floyd-Steinburg Dither " TrueColor (24 bpp) [Mirrar % Axis
— Tranzparency ™ RGE Order [birmar * Asis

[Enable Transparency

" Specily RGE

€ Use Upper-Left Colar

14

COMING SOON

PEG WindowBuilder is a powerful visual design tool created for use with the
C/PEG library. PEG WindowBuilder allows the developer to quickly create and
use custom windows and dialogs. The output of PEG WindowBuilder is the C
source code required to create the desired window or dialog. PEG
WindowBuilder also generates the prototype message handling code required to
process signals received from the window or dialog child controls.

PEG WindowBuilder is actually a C/PEG application program running in the
Win32 development environment. This guarantees that the operation of PEG
WindowBuilder is fully and completely WYSIWYG, and your target will appear
exactly as it does in the PEG WindowBuilder environment.

The developer using PEG WindowBuilder can import any number of custom
fonts and apply those fonts to C/PEG controls using drag-and-drop techniques.
The C/PEG controls immediately update to use the custom font, and the source
code produced also configures each control to use the font selected.

Likewise any number of graphics files may also be imported into the PEG
WindowBuilder project environment. Imported graphics may be any combination
of .bmp, .jpg, or .gif files. PEG WindowBuilder will re-encode these files,
performing dithering and color reduction if required, to insure that the graphics
are ready to use on the target platform. Imported graphics are written out to ‘C’
style data arrays, ready to be compiled and linked into the target system
software.

Once a graphic has been imported into the PEG WindowBuilder environment, it
can be applied to any C/PEG object which supports bitmap decorations. The
source code generated by WindowBuilder will perform all the necessary steps to
create the controls and assign the correct bitmaps to each control. While in the
WindowBuilder environment, the graphics appear on the selected controls
exactly as they will appear on the final target.

We strongly believe that PEG Window Builder™ is simply the most powerful
GUI application development tool available to embedded developers at any
price!

As with all C/PEG supporting tools, PEG WindowBuilder is essential to making

C/PEG a complete embedded GUI solution and is therefore included with the
C/PEG library at no extra charge.

15

The following is a screen shot of the PEG WindowBuilder™ application program:

1 PEG Window Builder Release 1.96b BRI
Project Configure Help ,m Edit Lapout Wiew
[T ool
545 Vs e | Tert b PeghiLTexBuiton
start 1= Indizator » PegBitmapButton
= d DecoratedButton
= [WBFlyer] Slide/Sercl » Ped
PenTextButton Container ¥ PegCheckBox
PegBitmapButton Chart + PegRadicButton
PegRadioButton it » PegSpinButton
F’eg[ﬁ\!cularD\al i v Peglcon
PegSlider
= PegGnoup
EEDEEBCESU“ ‘window Builder Demo S| il
egCheckBox
FegCheckBox = ‘J
FPeoCheckBox TV Flatings __ i il
PegHorzList . [il []
PegMLTextButton " Everyone PSl Gage = - -w'j
PeglinearScale] Fire High
+— PegSpreadSheet g
Pegiwindow [PGE12 8 L Sales ik
Eeton! —ll | Resticted £ Low i
Basic | Ertenced | color | ooty |
—PegVScroll PegHScroll—
& Mone 1 Mepe M Moveable
Yalume I g >
O Always £ Always I Sizeable:
) Autn Bute
i~ Decoration: 3
| Tile' [PegDialo Siyle :
I el g _I #1 Graphics Software I
T MenuBar Edit
[StalusBar Bl

Requirements

C/PEG is designed to work with any C compiler/debugger combination and any
embedded CPU. Since C/PEG is provided in source form, you can usually just
compile the C/PEG source files, generate the C/PEG library, and link the library
into your target software. Support is provided for any user who experiences
difficulty using C/PEG with a specific toolset.

For multi-tasking environments, the target real-time operating system must
support means for inter-task communication via messages. In addition, C/PEG
provides high-level timer services which are only operational if the underlying OS
supports a periodic timer interrupt service. When C/PEG is configured to
support multiple GUI tasks running at different priorities, the OS must support
means for semaphore protection of critical code sections. These requirements
are trivial in quality commercial real-time operating systems.

16

17

