The eCos Component Writer's Guide

Bart Veer
John Dallaway
Alex Schuilenburg

The eCos Component Writer's Guide
by Bart Veer, John Dallaway, and Alex Schuilenburg

Publication date 18 March 2024
Copyright © 2000, 2001 Free Software Foundation, Inc.
Copyright © 2014, 2016, 2017 eCosCentric Limited

Open Publication License

The document containing or referencing thislicense was produced in full, or in part if the document contains multiple licensing references, from work that is subject
to thetermsand conditions set forth in the Open Publication License, v1.0 or later (the latest versionis presently available at http://www.opencontent.org/openpuby/).

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder(s).

http://www.opencontent.org/openpub/

Table of Contents

O = oY1= T SO TP SPPPPTRPPPIN 1
LI 10011 0T0] oo | TP UPPPTTR PPN 1
COMPONENT FIAMEWOIKeeete et et ettt e e ettt e e et et e e e et et r e et eebar e et eabareeeesbn e eeeentnaaeees 1
CONFIGUIALTON OPLION ... eeeeit ettt ettt ettt e ettt e et et b e et et b s e et e e bt e et e et e e e e ebb e e e e ent s eeeenbnaaaees 1
10701101070 0 0| ST 1
PACKBOE ...t et et 2
1600]01{To U] 7= 1 (o) o T PO PP SOPPTTRN 2

LI 0 TP 2

LI 100 = (TP SPP PR 2
(0] 01 1 (1= S PP P PP PP TR 2
100010 c o (U= 3oL PPN 2
L0001 7= 1 | P SO SOP PP UPPPPTRUPPPIN 3
160001 [T £ PP UP PP PPPPPI 3

O TSP PTTN 3
COMPONENE REPOSITONY ...t eeeti ettt ettt ettt ettt ettt ettt et e s e et b e e et eb e et e eb e et e eb e et e ab e e e enba s 4

WhY CONFIQUIBDITTTY? ..ottt ettt ettt e et e et e ea e et e et r e e e nna e e e enaes 4
ApPProaches to CoNfigUIaDITITYcooeue i e e et e et et e e e e e enaes 4
Degrees Of CONfIGUIADITITYcoeutei it et et e et e ettt r e et et e e e e et r e et etbreeeeraaaeeee 6
L V= 1T 0T ST P PP PPPPTTRPPPPN 7
2. PaCKAGE OFQANIZALIONeeeeti ettt ettt ettt e et e ettt oo ettt oottt b e et e e bt et e bb e et e b e et e e e 8
Packages and the CoOmMPONENt REPOSITONYuuiiiiii ettt ettt et e et ettt e et et e et e e esna e eennes 8
PACKBGE VEISIONING ... ettt ettt e ettt e et e e et e e et e e e et e et e e e 9
Package CONENES AN LAYOULcouutieieiit ettt e e ettt e et e ettt e et et e e et et e e e e ett e e e eett e e e eetb e eeeennaeeeens 10
OULlINE Of the BUIIA PrOCESS ... ettt ettt ettt e e e b e e e ra s 11
ConfigUIabl@ SOUICE COUEeeeiiieeeei e ettt e e e ettt e e et e te e e e e et e e e eeba e eeentnaeeees 12
EXPOrted HEAOE! FIlES ...ttt ettt e ettt e e et et r e et et e e e eera e eeeees 13
Package DOCUMENTALIONuuuieiie ettt ettt et e et e et e e et et r e e e et e e e e eba s 15

LIS O S ST OPPTTTSOPPTTR 15
HOSE-SIAE SUPPOI ..ttt ettt et e et e e ettt e e et eb e e et e et e e e e e e b 15
Making a Package DiStrIDULIONcoeuuii et e e e et e et e e e b 15
The eCos package distribution file FOrMELoiiii e 16
Preparing eCos packages for distribDULION ..o 16

3. THE CDL LBINQUAGE eeeeti ettt e ettt ettt ettt ettt ettt e ettt e e e etk e et e e bt e et e bt e et eba e e et et e e e e st e e e enanes 18
LBNGUBOE OVEIVIBIN ...ttt ettt ettt e et et e ettt e et e b e e ettt e e et e b e e et e bt e et et e e et st e e e enba s 18
CDL COMIMBNGS ...ttt ettt ettt ettt ettt 4o ettt 4o et e 4ottt b oo et e b e et e e e et e b b e et e bb e et et e e e eba s 19
O D I (o]0 = 4 11= T PP TPPPTT 21
INfOrmation-providing PrOPEITIESccierii ettt e e e e ne s 22

The Configuration HIErarChYccoouuiiiiiii ettt e e et e et et e e e et e e eera e aeens 22
ValUE-TElAIEA PrOPEITIES ...ttt e ettt e ettt e et et e e et erbaeeeenb e eeees 23
Generating the Configuration HEBOEr FIlESiiiiiii e 25
Controlling What GEES BUIITcieei ettt e et e e e ab e e e naa s 26
MISCElBNEOUS PrOPEITIESttt e e et e e et et e e et et e e et et reeeerbnaeeeenbnneaees 27
OpPtioN NaMING CONVENLIONceettieeeitt ettt ettt e et et e et et e e et ett e e et ettt e e e e ta e e e eett e e e eebeaeeeeteaeeeeneaaeees 27
F Y A 1 eTe (¥ ex o) i (o I ot PP PP PUPPPTI 29
VAlUES AN EXPIESSIONSv.eeeitii ettt ettt ettt ettt e et e e ettt e ettt b e et e et s e et e ebet e e e eebeneeeeete e e e eebnnaeeenn 33
OPLION VBIUES ...ttt ettt ettt e et e e e et e b e e et b e e et e e e na s 33
OFdiNAIY EXPIrESSIONScetuetiiti ettt ettt ettt e e et et e ettt e ettt b e e ettt e ettt b r e et e tb s e et eeban e et et e e et eba e e eenan s 38
FUNCEIONS ..ottt e et e ettt e et e b e e et e b e e et e b e e et et e e e e aba s 41

GOl EXPIESSIONS ... eeettiee ettt ettt ettt ettt e ettt e ettt bt e e et et e e et e b e e et e e et e oo et e e et e et et e e e ana s 43

LISt EXIIESSIONS ...ttt ettt ettt ettt ettt ettt ettt et e e e r s 44
L1 g = o= PP PPTTRPPPRTT 45

The eCos Component Writer's Guide

Updating the COS.0D QafAhasecouuiiiiiiii e e e e e e e e e e e e et e et e et e e et e e e aaaaae 46
N T 2T] o I = ot S S SPPPTPPRN 49
210 o B = T 0 o o PRSPPI 49
Configuration Header File GENEIatiONciuuiiii e e e e e e e e e e e e e et e e et e e st e e st e e et e eeanaees 50
B =L T I == o U= P 54

L TUTH Lo [T 0T =0 S 55
UPdating the BUIT TrE8uuiiiiiii et e e e e e e e e e e e e e e et e et e et e e et e e e eeenaas 56
EXporting PUBIIC HEAAEr FIlESoee i e e e e e et e e e e e e e eaens 56

Lo 1 0101 1o RPN 57
(€T ao IR TcT N o = =P 59

L= A = C T o I 1 = PP 59
(0001 oTH = SR To [=T L 60

(TS (g T 0T o B = o1 62

S 00T o[T PN 65

I L TS S o 65

S TUTH Lo T R == O = 65
5. CDL Language SPECITICAIIONuiiiiiciie e et e e e e e e e e e e e e e e e et e e et e e et e e et e e et e e et e e et e e ean e e st s e ean e eanneeaenns 68
(oo | 0 o S o 1 o T 69
oo | I o 0T ¢ o Yo 4 1= o | A 71
(oo | I o - ot - o - 73
oo | I T 0 0 =Y g - Yo = 75
o 1YL N 77
(o= oD 1= o SR 79
o0 001 7] =N 81
(o 1= = 10 7= 0= U 83
(017 T PRSPPI 85
o (= 1T T=T 01 1 7= P 87
o 1= T L= 1= L= P 88
o[1T L= o (oo 89
o1 o2 1100 o 91
0TS0 P 92
0 [0 o ORI 93
L=,/ PR 94
S0 T PP 96
0 =11 1 97
L]0 = 001 01 99
ot 10 o 1= o [100
ot oL == 101
L= o 2 L (= 102
1] o= Y/ P 104
0 SO 105
g S o o= P 107
Lo 0 L= 1 1 109
72 = P 110
1= 0 U 1= 112
LS o 1 o) P 113

Chapter 1. Overview

eCos® was designed from the very beginning as a configurable component architecture. The core eCos system consi sts of anumber
of different components such as the kernel, the C library, an infrastructure package. Each of these provides a large number of
configuration options, alowing application developers to build a system that matches the requirements of their particular applica-
tion. To manage the potential complexity of multiple components and lots of configuration options, eCos comes with a component
framework: a collection of tools specifically designed to support configuring multiple components. Furthermore this component
framework is extensible, allowing additional components to be added to the system at any time.

Terminology

The eCos component architecture involves a number of key concepts.

Component Framework

The phrase component framework is used to describe the collection of toolsthat allow usersto configure a system and administer a
component repository. This includes the ecosconfig command line tool, the graphical configuration tool, and the package admin-
istration tool. Both the command line and graphical tools are based on a single underlying library, the CDL library.

Configuration Option

The option is the basic unit of configurability. Typically each option corresponds to a single choice that a user can make. For
example there is an option to control whether or not assertions are enabled, and the kernel provides an option corresponding to
the number of scheduling priority levels in the system. Options can control very small amounts of code such as whether or not
the Clibrary's st r t ok getsinlined. They can also control quite large amounts of code, for example whether or not the pri nt f
supports floating point conversions.

Many options are straightforward, and the user only gets to choose whether the option is enabled or disabled. Some options are
more complicated, for example the number of scheduling priority levelsisanumber that should be within a certain range. Options
should always start off with a sensible default setting, so that it is not necessary for users to make hundreds of decisions before
any work can start on developing the application. Once the application is running the various configuration options can be used
to tune the system for the specific needs of the application.

The component framework allows for options that are not directly user-modifiable. Consider the case of processor endianness:
some processors are aways big-endian or aways little-endian, while with other processors there is a choice. Depending on the
user's choice of target hardware, endianness may or may not be user-modifiable.

Component

A component is a unit of functionality such as a particular kernel scheduler or a device driver for a specific device. A component
is also a configuration option in that users may want to enable or disable all the functionality in a component. For example, if a
particular device on the target hardware is not going to be used by the application, directly or indirectly, then thereis no point in
having adevicedriver for it. Furthermore disabling the device driver should reduce the memory requirementsfor both code and data.

Components may contain further configuration options. In the case of a device driver, there may be options to control the exact
behavior of that driver. Thesewill of coursebeirrelevant if thedriver asawholeisdisabled. Moregenerally optionsand components
liveinahierarchy, where any component can contain options specific to that component and further sub-components. Itispossibleto
view the entire eCos kernel as one big component, containing sub-components for scheduling, exception handling, synchronization
primitives, and so on. The synchronization primitives component can contain further sub-components for mutexes, semaphores,
condition variables, event flags, and so on. The mutex component can contain configuration optionsfor issueslike priority inversion
support.

Overview

Package

A package is a specia type of component. Specifically, a package is the unit of distribution of components. It is possible to
create adistribution file for a package containing all of the source code, header files, documentation, and other relevant files. This
distribution file can then be installed using the appropriate tool. Afterwards it is possible to uninstall that package, or to install a
later version. The core eCos distribution comes with anumber of packages such asthe kernel and the infrastructure. Other packages
such as network stacks can come from various different sources and can be installed alongside the core distribution.

Packages can be enabled or disabled, but the user experienceisalittle bit different. Generally it makes no sense for the toolsto load
the details of every single package that has been installed. For example, if the target hardware uses an ARM processor then thereis
no point in loading the HAL packages for other architectures and displaying choices to the user which are not relevant. Therefore
enabling a package means|oading its configuration datainto the appropriate tool, and disabling a packageis an unload operation. In
addition, packagesare not just enabled or disabled: it isalso possibleto select the particular version of apackage that should be used.

Configuration

A configuration is a collection of user choices. The various tools that make up the component framework deal with entire config-
urations. Users can create a hew configuration, output a savefile (by default ecos. ecc), manipulate a configuration, and use
a configuration to generate a build tree prior to building eCos and any other packages that have been selected. A configuration
includes detail s such as which packages have been selected, in addition to finer-grained information such as which optionsin those
packages have been enabled or disabled by the user.

Target

The target is the specific piece of hardware on which the application is expected to run. This may be an off-the-shelf evaluation
board, a piece of custom hardware intended for a specific application, or it could be something like a simulator. One of the steps
when creating a new configuration is need to specify the target. The component framework will map this on to a set of packages
that are used to populate the configuration, typically HAL and device driver packages, and in addition it may cause certain options
to be changed from their default settings to something more appropriate for the specified target.

Template

A template is a partial configuration, aimed at providing users with an appropriate starting point. eCos is shipped with a small
number of templates, which correspond closely to common ways of using the system. There isaminimal template which provides
very little functionality, just enough to bootstrap the hardware and then jump directly to application code. The default template
adds additional functionality, for example it causes the kernel and C library packages to be loaded as well. The uitron template
adds further functionality in the form of apl TRON compatibility layer. Creating a new configuration typically involves specifying
atemplate as well as atarget, resulting in a configuration that can be built and linked with the application code and that will run
on the actual hardware. It isthen possible to fine-tune configuration options to produce something that better matches the specific
requirements of the application.

Properties

The component framework needs a certain amount of information about each option. For example it needs to know what the legal
values are, what the default should be, where to find the on-line documentation if the user needs to consult that in order to make a
decision, and so on. These are all properties of the option. Every option (including components and packages) consists of a name
and a set of properties.

Consequences

Choices must have consequences. For an eCos configuration the main end product is alibrary that can be linked with application
code, so the consequences of a user choice must affect the build process. This happensin two main ways. First, options can affect

Overview

which files get built and end up in the library. Second, details of the current option settings get written into various configuration
header files using C preprocessor #def i ne directives, and package source code can #i ncl ude these configuration headers and
adapt accordingly. This allows options to affect a package at a very fine grain, at the level of individual linesin a source file if
desired. There may be other consequences as well, for example there are options to control the compiler flags that get used during
the build process.

Constraints

Configuration choices are not independent. The C library can provide thread-safe implementations of functionsliker and, but only
if the kernel provides support for per-thread data. Thisisaconstraint: the C library option has arequirement on the kernel. A typical
configuration involves a considerable number of constraints, of varying complexity: many constraints are straightforward, option
Arequires option B, or option C precludes option D. Other constraints can be more complicated, for example option E may require
the presence of akernel scheduler but does not care whether it is the bitmap scheduler, the mlqueue scheduler, or something else.

Another type of constraint involves the values that can be used for certain options. For example there is a kernel option related
to the number of scheduling levels, and there is alegal values constraint on this option: specifying zero or a negative number for
the number of scheduling levels makes no sense.

Conflicts

Asthe user manipulates optionsit is possible to end up with an invalid configuration, where one or more constraints are not satisfied.
For exampleif kernel per-thread datais disabled but the C library's thread-saf ety options are |eft enabled then there are unsatisfied
constraints, also known as conflicts. Such conflicts will be reported by the configuration tools. The presence of conflicts does not
prevent users from attempting to build eCos, but the consegquences are undefined: there may be compile-time failures, there may
be link-time failures, the application may completely fail to run, or the application may run most of the time but once in a while
there will be a strange failure... Typically users will want to resolve al conflicts before continuing.

To make things easier for the user, the configuration tools contain an inference engine. This can examine a conflict in a particular
configuration and try to figure out some way of resolving the conflict. Depending on the particular tool being used, the inference
engine may get invoked automatically at certain times or the user may need to invoke it explicitly. Also depending on the tool, the
inference engine may apply any solutions it finds automatically or it may request user confirmation.

CDL

The configuration tool srequireinformation about the vari ous options provided by each package, their consequencesand constraints,
and other properties such as the location of on-line documentation. Thisinformation hasto be provided in the form of CDL scripts.
CDL isshort for Component Definition Language, and is specifically designed as away of describing configuration options.

A typical package contains the following:

1. Some number of source files which will end up in alibrary. The application code will be linked with this library to produce an
executable. Some source files may serve other purposes, for example to provide alinker script.

2. Exported header files which define the interface provided by the package.
3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working as expected on their
particular hardware and in their specific configuration.

5. One or more CDL scripts describing the package to the configuration system.

Not all packages need to contain all of these. For example some packages such as device drivers may not provide a new interface,
instead they just provide another implementation of an existing interface. However all packages must contain a CDL script that
describes the package to the configuration tools.

Overview

Component Repository

All eCos installations include a component repository. Thisis a directory structure where all the packages get installed. The com-
ponent framework comes with an administration tool that allows new packages or new versions of a package to be installed, old
packages to be removed, and so on. The component repository includes a simple database, maintained by the administration tool,
which contains details of the various packages.

Generally application devel opers do not need to modify anything inside the component repository, except by means of the admin-
istration tool. Instead their work involves separate build and install trees. This allows the component repository to be treated as a
read-only resource that can be shared by multiple projects and multiple users. Component writers modifying one of the packages
do need to manipulate files in the component repository.

Why Configurability?

The eCos component framework places agreat deal of emphasis on configurability. The fundamental goal isto allow large parts of
embedded applicationsto be constructed from re-usabl e software components, which doesnot apriori require that those components
be highly configurable. However embedded application devel opment often involves some serious constraints.

Many embedded applications have to work with very little memory, to keep down manufacturing costs. Thefinal applicationimage
that will get blown into EPROM's or used to manufacture ROMs should contain only the code that is absolutely necessary for
the application to work, and nothing else. If afew tens of kilobytes are added unnecessarily to atypical desktop application then
this is regrettable, but is quite likely to go unnoticed. If an embedded application does not fit on the target hardware then the
problem is much more serious. The component framework must allow users to configure the components so that any unnecessary
functionality gets removed.

Many embedded applications heed deterministic behavior so that they can meet real -time requirements. Such deterministic behavior
can often be provided, but at a cost in terms of code size, slower algorithms, and so on. Other applications have no such real-time
requirements, or only for asmall part of the overall system, and the bulk of the system should not suffer any penalties. Again the
component framework must alow the users control over the timing behavior of components.

Embedded systemstend to be difficult to debug. Evenwhenitispossibleto get information out of thetarget hardware by meansother
than flashing an LED, the more interesting debugging problems are likely to be timing-related and hence very hard to reproduce
and track down. The re-usable components can provide debugging assistance in various ways. They can provide functionality that
can be exploited by source level debuggers such as gdb, for example per-thread debugging information. They can aso contain
various assertions so that problems can be detected early on, tracing mechanisms to figure out what happened before the assertion
failure, and so on. Of course all of these involve overheads, especialy code size, and affect the timing. Allowing users to control
which debugging features are enabled for any given application build is very desirable.

However, athough it is desirable for re-usable components to provide appropriate configuration options this is not required. It is
possibleto produce a package which does not provide a single configuration option — although the user still getsto choose whether
or not to use the package. In such cases it is still necessary to provide a minimal CDL script, but its main purpose would be to
integrate the package with the component framework's build system.

Approaches to Configurability

The purpose of configurability is to control the behavior of components. A scheduler component may or may not support time
dlicing; it may or may not support multiple priorities; it may or may not perform error checking on arguments passed to the schedul er
routines. In the context of a desktop application a button widget may contain some text or it may contain a picture; the text may
be displayed in a variety of fonts; the foreground and background color may vary. When an application uses a component there
must be some way of specifying the desired behavior. The component writer has no way of knowing in advance exactly how a
particular component will end up being used.

One way to control the behavior is at run time. The application creates an instance of a button object, and then instructs this object
to display either text or apicture. No specia effort by the application developer is required, since a button can always support all

Overview

desired behavior. There is of course a major disadvantage in terms of the size of the final application image: the code that gets
linked with the application has to provide support for all possible behavior, even if the application does not require it.

Another approach is to control the behavior at link-time, typically by using inheritance in an object-oriented language. The
button library provides an abstract base class But t on and derived classes Text But t on and Pi ct ur eBut t on. If an ap-
plication only uses text buttons then it will only create objects of type Text Butt on, and the code for the Pi ct ur e-
But t on class does not get used. In many cases this approach works rather well and reduces the final image size, but
there are limitations. The main one is that you can only have so many derived classes before the system gets unmanage-
able: aderived classText But t onUsi ngABor der W dt hOf OnePl usAwWi t eBackgr oundAndBI ackFor egr oundAn-
dATwel vePoi nt Ti mnesFont AndNoEr r or Checki ngOr Asser ti ons isnot particularly sensible asfar asmost application
developers are concerned.

The eCos component framework allows the behavior of components to be controlled at an even earlier time: when the component
source code gets compiled and turned into alibrary. The button component could provide options, for example an option that only
text buttons need to be supported. The component gets built and becomes part of alibrary intended specifically for the application,
and the library will contain only the code that is required by this application and nothing else. A different application with different
requirements would need its own version of the library, configured separately.

In theory compile-time configurability should give the best possible results in terms of code size, because it allows code to be
controlled at the individual statement level rather than at the function or object level. Consider an example more closely related
to embedded systems, a package to support multi-threading. A standard routine within such a package allows applications to kill
threads asynchronously: the POSIX routinefor thisispt hr ead_cancel ; theequivaent routinein I TRON ist er _t sk. These
routines themselves tend to involve a significant amount of code, but that is not the real problem: other parts of the system require
extracode and data for thekill routine to be able to function correctly. For exampleif athread is blocked while waiting on a mutex
and is killed off by another thread then the kill operation may have to do two things: remove the thread from the mutex's queue
of waiting threads; and undo the effects, if any, of priority inheritance. The implementation requires extrafields in the thread data
structure so that the kill routine knows about the thread's current state, and extra code in the mutex routines to fill in and clear
these extra fields correctly.

Most embedded applications do not require the ability to kill off athread asynchronously, and hence the kill routine will not get
linked into the final application image. Without compile-time configurability this would still mean that the mutex code and similar
parts of the system contain code and data that serve no useful purpose in this application. The eCos approach allows the user to
select that the thread kill functionality is not required, and all the components can adapt to this at compile-time. For example the
code in the mutex lock routine contains statements to support the killing of threads, but these statements will only get compiled in
if that functionality is required. The overall result is that the final application image contains only the code and data that is really
needed for the application to work, and nothing else.

Of course there are complications. To return to the button example, the application code might only use text buttons directly, but it
might also use some higher-level widget such as afile selector and this file selector might require buttons with pictures. Therefore
the button code must still be compiled to support pictures aswell astext. The configuration tools must be aware of the dependencies
between components and ensure that the internal constraints are met, as well as the external requirements of the application code.
An area of particular concern is conflicting requirements. a button component might be written in such a way that it can only
support either text buttons or picture buttons, but not both in one application; this would represent a weakness in the component
itself rather than in the component framework as awhole.

Compile-time configurability is not intended to replace the other approaches but rather to complement them. There will be times
when run-time selection of behavior is desirable: for example an application may need to be able to change the baud rate of a
seria line, and the system must then provide away of doing this at run-time. There will also be times when link-time selection is
desirable: for example a C library might provide two different random number routinesr and and | r and48; these do not affect
other code so there is no good reason for the C library component not to provide both of these, and allow the application code to
use none, one, or both of them as appropriate; any unused functionswill just get eliminated at link-time. Compile-time selection of
behavior is another option, and it can be the most powerful one of the three and the best suited to embedded systems development.

Overview

Degrees of Configurability

Components can support configurability in varying degrees. It is not necessary to have any configuration options at al, and the
only user choiceiswhether or not to load a particular package. Alternatively it is possible to implement highly-configurable code.
As an example consider a typical facility that is provided by many real-time kernels, mutex locks. The possible configuration
options include:

1. If no part of the application and no other component requires mutexes then there is no point in having the mutex code compiled
into alibrary at al. This saves having to compile the code. In addition there will never be any need for the user to configure the
detailed behavior of mutexes. Therefore the presence of mutexesis a configuration option in itself.

2. Bvenif the application does make use of mutexes directly or indirectly, this does not mean that all mutex functions have to be
included. The minimum functionality consists of lock and unlock functions. However there are variants of the locking primitive
such as try-lock and try-with-timeout which may or may not be needed.

Generally it will be harmless to compile the try-lock function even if it is not actually required, because the function will get
eliminated at link-time. Some users might take the view that the try-lock function should never get compiled in unless it is
actually needed, to reduce compile-time and disk usage. Other users might argue that there are very few valid usesfor atry-lock
function and it should not be compiled by default to discourage incorrect uses. The presence of atry-lock function is a possible
configuration option, although it may be sensible to default it to true.

The try-with-timeout variant is more complicated because it adds a dependency: the mutex code will now rely on some other
component to provide a timer facility. To make things worse the presence of this timer might impact other components, for
exampleit may now be necessary to guard against timer interrupts, and thus have an insidious effect on code size. The presence
of alock-with-timeout function is clearly a sensible configuration option, but the default value is less obvious. If the option is
enabled by default then the final application image may end up with code that is not actually essential. If the option is disabled
by default then users will have to enable the option somehow in order to use the function, implying more effort on the part of
the user. One possible approach is to calculate the default value based on whether or not atimer component is present anyway.

3. The application may or may not require the ability to create and destroy mutexes dynamically. For most embedded systems
it is both less error-prone and more efficient to create objects like mutexes statically. Dynamic creation of mutexes can be
implemented using a pre-allocated pool of mutex objects, involving some extra code to manipulate the pool and an additional
configuration option to definethe size of the pool. Alternatively it can beimplemented using ageneral -purpose memory allocator,
involving quite alot of extra code and configuration options. However this general-purpose memory allocator may be present
anyway to support the application itself or some other component. The ability to create and destroy mutexes dynamically isa
configuration option, and there may not be a sensible default that is appropriate for all applications.

4. Animportant issue for mutex locksis the handling of priority inversion, where ahigh priority thread is prevented from running
because it needs a lock owned by alower priority thread. Thisis only an issue if there is a scheduler with multiple priorities:
some systems may need multi-threading and hence synchronization primitives, but asingle priority level may suffice. If priority
inversion is a theoretical possibility then the application devel oper may still want to ignore it because the application has been
designed such that the problem cannot arise in practice. Alternatively the developer may want some sort of exception raised if
priority inversion does occur, because it should not happen but there may still be bugsin the code. If priority inversion can occur
legally then there are three main ways of handling it: priority ceilings, priority inheritance, and ignoring the problem. Priority
ceilings require little code but extra effort on the part of the application developer. Priority inheritance requires more code but
isautomatic. Ignoring priority inversion may or may not be acceptable, depending on the application and exactly when priority
inversion can occur. Some of these choices involve additional configuration options, for example there are different ways of
raising an exception, and priority inheritance may or may not be applied recursively.

5. Asafurther complication some mutexes may be hidden inside a component rather than being an explicit part of the application.
For example, if the C library isconfigured to provideanal | oc call then there may be an associated mutex to make the function
automatically thread-safe, with no need for external locking. In such cases the memory allocation component of the C library
can impose a constraint on the kernel, requiring that mutexes be provided. If the user attempts to disable mutexes anyway then
the configuration tools will report a conflict.

Overview

6. The mutex code should contain some general debugging code such as assertions and tracing. Usually such debug support will be
enabled or disabled at a coarse level such asthe entire system or everything inside the kernel, but sometimesit will be desirable
to enable the support more selectively. One reason would be memory requirements: the target may not have enough memory to
hold the systemif all debugging is enabled. Another reason is if most of the system isworking but there are afew problems till
to resolved; enabling debugging in the entire system might change the system's timing behavior too much, but enabling some
debug options selectively can still be useful. There should be configuration options to allow specific types of debugging to be
enabled at afine-grain, but with default settings inherited from an enclosing component or from global settings.

7. The mutex code may contain specialized code to interact with a debugging tool running on the host. It should be possible to
enable or disable this debugging code, and there may be additional configuration options controlling the detailed behavior.

Altogether there may be something like ten to twenty configuration options that are specific to the mutex code. There may be a
similar number of additional options related to assertions and other debug facilities. All of the options should have sensible default
values, possibly fixed, possibly cal culated depending on what is happening elsewhere in the configuration. For example the default
setting for an assertion option should generally inherit from a kernel-wide assertion control option, which in turn inherits from a
global option. This allows users to enable or disable assertions globally or at amore fine-grained level, as desired.

Different components may be configurable to different degrees, ranging from no options at al to the fine-grained configurability
of the above mutex example (or possibly even further). It is up to component writers to decide what options should be provided
and how best to serve the needs of application developers who want to use that component.

Warnings

Large parts of eCos were developed concurrently with the development of the configuration technology, or in some cases before
design work on that technology was complete. As a consequence the various eCos packages often make only limited use of the
available functionality. This situation is expected to change over time. It does mean that many of the descriptionsin this guide will
not correspond exactly to how the eCos packages work right now, but rather to how they could work. Some of the more extreme
discrepancies such as the location of on-line documentation in the component repository will be mentioned in the appropriate
placesin the guide.

A consequence of thisisthat developers of new components can look at existing CDL scripts for examples, and discover discrep-
ancies between what is recommended in this guide and what actually happens at present. |n such cases this guide should be treated
as authoritative.

It is also worth noting that the current component framework is not finished. Various parts of this guide will refer to possible
changes and enhancements in future versions. Examining the source code of the configuration tools may reveal hints about other
likely developments, and there are many more possible enhancements which only exist at a conceptual level right now.

Chapter 2. Package Organization

For apackageto be usablein the eCos component framework it must conform to certain rulesimposed by that framework. Packages
must be distributed in aform that is understood by the component repository administration tool. There must be a top-level CDL
script which describes the package to the component framework. There are certain limitations related to how a package gets built,
so that the package can till be used in avariety of host environments. In addition to these rules, the component framework provides
anumber of guidelines. Packages do not have to conform to the guidelines, but sticking to them can simplify certain operations.

This chapter dealswith the general organization of a package, for example how to distinguish between private and exported header
files. Chapter 3, The CDL Language describes the CDL language. Chapter 4, The Build Process details the build process.

Packages and the Component Repository

All eCos installations include a component repository. This is a directory structure for al installed packages. The component
framework comes with an administration tool that allows new packages or new versions of a package to beinstalled, old packages
to be removed, and so on. The component repository includes a simple database, maintained by the administration tool, which
contains details of the various packages.

packages/
ecos.db compat! emor/ hal/ infra/ iof kemell language/ templates/
linux/ posix/ ... archli arch2/ cl c++f

Each package hasitsown little directory hierarchy within the component repository. Keeping several packagesin asingle directory
isillegal. The error, infraand kernel packages al live at the top-level of the repository. For other types of packagesthere are some
pre-defined directories: conpat isused for compatibility packages, which implement other interfaces such as W TRON or POSIX
using native eCos calls; hal isused for packagesthat port eCosto different architectures or platforms, and this directory is further
organized on a per-architecture basis; i 0 is intended for device drivers; | anguage is used for language support libraries, for
example the C library. There are no strict rules defining where new packages should get installed. Obviously if an existing top-
level directory such as conpat is applicable then the new package should go in there. If a new category is desirable then it is
possible to create a new sub-directory in the component repository. For example, an organization planning to release a number of
eCos packages may want them all to appear below a sub-directory corresponding to the organization's name — in the hope that
the name will not change too often. It is possible to add new packages directly to the top-level of the component repository, but
this should be avoided.

The ecos.db file holds the component repository database and is managed by the administration tool. The various configuration
toolsread in thisfilewhen they start-up to obtain information about the various packagesthat have been installed. When devel oping
anew packageit isnecessary to add someinformation to thefile, asdescribed in the section called “ Updating the ecos.db database”.
Thet enpl at es directory holds various configuration templates.

@ Note
Earlier releases of eCos came with two separate files, t ar get s and packages. The ecos.db database replaces
both of these.

2 Caution
The current ecos.db database does not yet provide all of the information needed by the component framework. Its
format is subject to change in future releases, and the file may be replaced completely if necessary. There are a

Package Organization

number of other likely future developments related to the component repository and the database. The way targets
are described is subject to change. Sometimesiit is desirable for component writersto do their initial development in
adirectory outside the component repository, but there is no specific support in the framework for that yet.

Package Versioning

Below each package directory there can be one or more version sub-directories, named after the versions. Thisis a requirement of
the component framework: it must be possible for users to install multiple versions of a package and select which one to use for
any given application. This has a number of advantages to users: most importantly it allows a single component repository to be
shared between multiple users and multiple projects, as required; also it facilitates experiments, for example it is relatively easy
to try out the latest version of some package and see if it makes any difference. There is a potential disadvantage in terms of disk
space. However since eCos packages generally consist of source code intended for small embedded systems, and given typical
modern disk sizes, keeping a number of different versions of a package installed will usually be acceptable. The administration
tool can be used to remove versions that are no longer required.

kemel/

curent/ v3.1.81/ v4.0.1/

Theversioncurr ent isspecia. Typicaly it corresponds to the very latest version of the sources, obtained by anonymous CVS.
These sources may change frequently, unlike full releases which do not change (or only when patches are produced). Component
writers may also want to work onthe cur r ent version.

All other subdirectories of a package correspond to specific releases of that package. The component framework allows users to
select the particular version of a package they want to use, but by default the most recent one will be used. This requires some rules
for ordering version numbers, a difficult task because of the wide variety of ways in which versions can be identified.

1. Theversioncurr ent isaways considered to be the most recent version.

2. If thefirst character of both strings are either v or V, these are skipped because it makes little sense to enforce case sensitivity
here. Potentially this could result in ambiguity if there are two version directories V1. 0 and v1. 0, but this will match the
confusion experienced by any users of such a package. However if two subsequent releases are called V1. 0 and v1. 1, eg.
because of a minor mix-up when making the distribution file, then the case difference isignored.

3. Next the two version strings are compared one character at atime. If both strings are currently at a digit then a string to number
conversion takes place, and the resulting numbers are compared. For example v10 isamore recent release than v2. If the two
numbers are the same then processing continues, so for v2b and v2c¢ the version comparison code would moveontob andc.

4. The charactersdot . , hyphen - and underscore _ are treated as equivalent separators, so if one release goesout asvl 1 and
the next goesout asv1. 2 the separator has no effect.

5. If neither string has yet terminated but the characters are different, ASCIl comparison is used. For example V1. 1b is more
recent thanvl. 1al pha.

6. If one version string terminates before the other, the current character determines which is the more recent. If the other string is
currently at a separator character, for examplevl. 3. 1 andv1. 3, then the former is assumed to be a minor release and hence
more recent than the latter. If the other string is not at a separator character, for example v1. 3bet a, then it is treated as an
experimental version of thev1. 3 release and hence older.

7. There is no specia processing of dates, so with two versions ss- 20000316 and ss- 20001111 the numerical values
20001111 and 20000316 determinethe result: larger values are more recent. It is suggested that the full year be used in such
cases rather than a shorthand like 00, to avoid Y 2100 problems.

Package Organization

8. Thereisno limit on how many levels of versioning are used, so there could in theory beav3. 1. 4. 1. 5. 9. 2. 7 release of a
package. However thisis unlikely to be of benefit to typical users of a package.

The version comparison rules of the component framework may not be suitable for every version numbering scheme in existence,
but they should cope with many common cases.

2 Caution
There are someissues still to be resolved beforeiit is possible to combinethe cur r ent sources available via anony-
mous CV'S and full releases of eCos and additional packages in a single component repository. The first problem
relates to the ecos.db database: if anew packageisadded viathe CV Srepository then this requires a database update,
but the administration tool is bypassed. The second problem arisesif an organization chooses to place its component
repository under source code control using CV'S, in which case different directories will belong to different CVS
servers. Theseissues will be addressed in a future release.

Package Contents and Layout

A typical package contains the following:

1. Some number of source files which will end up in alibrary. The application code will be linked with this library to produce an
executable. Some source files may serve other purposes, for example to provide alinker script.

2. Exported header files which define the interface provided by the package.
3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working as expected on their
particular hardware and in their specific configuration.

5. One or more CDL scripts describing the package to the configuration system.

It is also conventional to have a per-package Changelog file used to keep track of changes to that package. Thisis especialy
valuable to end users of the package who may not have convenient access to the source code control system used to manage the
master copy of the package, and hence cannot find out easily what has changed. Often it can be very useful to the main devel opers
aswell.

Any given packages need not contain all of these. It iscompulsory to have at least one CDL script describing the package, otherwise
the component framework would be unable to process it. Some packages may not have any source code: it is possible to have
a package that merely defines a common interface which can then be implemented by severa other packages, especially in the
context of device drivers; however it is still common to have some code in such packages to avoid replicating shareable code in
all of the implementation packages. Similarly it is possible to have a package with no exported header files, just source code that
implements an existing interface: for example an ethernet device driver might just implement a standard interface and not provide
any additional functionality. Packages do not need to come with any on-line documentation, although this may affect how many
people will want to use the package. Much the same applies to per-package test cases.

The component framework has a recommended per-package directory layout which splits the package contents on a functional
basis:

<package>/

Changelog cdl/ doc/ include/ src/ tests/

For example, if apackage hasani ncl ude sub-directory then the component framework will assume that all header filesin and
below that directory are exported header files and will do the right thing at build time. Similarly if thereis doc property indicating
the location of on-line documentation then the component framework will first ook in the doc sub-directory.

10

Package Organization

Thisdirectory layout is just aguideling, it is not enforced by the component framework. For simple packages it often makes more
sense to have al of the filesin just one directory. For example a package could just contain the files hel | 0. cxx, hel | 0. h,
hel | o. ht M andhel | 0. cdl . By default hel | 0. h will be treated as an exported header file, although this can be overridden
with the include files property. Assuming there is a doc property referring to hel | o. ht M and there is no doc sub-directory
then the tools will search for this file relative to the package's top-level and everything will just work. Much the same applies to
hel | 0. cxx andhel | 0. cdl .

@ Tip
Older versions of the eCos build system only supported packages that followed the directory structure exactly. Hence
certain core packagessuch aser r or implement the full directory structure, even though that is a particularly simple
package and the full directory structure is inappropriate. Component writers can decide for themselves whether or
not the directory structure guidelines are appropriate for their package.

Outline of the Build Process

The full build process is described in Chapter 4, The Build Process, but a summary is appropriate here. A build involves three
directory structures:

1. The component repository. This is where al the package source code is held, along with CDL scripts, documentation, and so
on. For build purposes acomponent repository is read-only. Application devel opers will only modify the component repository
when installing or removing packages, via the administration tool. Component writers will typically work on just one package
in the component repository.

2. The build tree. Each configuration has its own build tree, which can be regenerated at any time using the configuration's
ecos. ecc savefile The build tree contains only intermediate files, primarily object files. Once a build is complete the build
tree contains no information that is useful for application development and can be wiped, although this would slow down any
rebuilds following changes to the configuration.

3. Theinstal tree. Thisis populated during a build, and contains all the files relevant to application development. There will be
al i b sub-directory which typically contains| i bt ar get . a, alinker script, start-up code, and so on. There will also be an
i ncl ude sub-directory containing all the header files exported by the various packages. Therewill alsobeai ncl ude/ pkg-
conf sub-directory containing various configuration header files with #def i ne' s for the options. Typically the install tree
is created within the build tree, but thisis not a requirement.

The build process involves the following steps:

1. Given a configuration, the component framework is responsible for creating all the directories in the build and install trees. If
these trees already exist then the component framework is responsible for any clean-ups that may be necessary, for example if
a package has been removed then all related files should be expunged from the build and install trees. The configuration header
fileswill be generated at thistime. Depending on the host environment, the component framework will also generate makefiles
or some other way of building the various packages. Every time the configuration is modified this step needs to be repeated, to
ensure that all option consequences take effect. Care istaken that this will not result in unnecessary rebuilds.

@ Note
At present this step needsto beinvoked manually. In afuture version the generated makefile may if desired perform
this step automatically, using a dependency on theecos. ecc savefile.

2. Thefirst step in an actual build isto make sure that the install tree contains all exported header files. All compilations will use
theinstall tree'si ncl ude directory as one of the places to search for header files.

3. All sourcefilesrelevant to the current configuration get compiled. Thisinvolves aset of compiler flagsinitialized on a per-target
basi s, with each package being able to modify these flags, and with the ability for the user to overridethe flagsaswell. Care hasto
betaken hereto avoid inappropriate target-dependenciesin packagesthat areintended to be portable. The component framework

11

Package Organization

has built-in knowledge of how to handle C, C++ and assembler source files — other languages may be added in future, as and
when necessary. The compile property is used to list the files that should get compiled. All object files end up in the build tree.

4. Once al the object files have been built they are collected into a library, typically | i bt ar get . a, which can then be linked
with application code. Thelibrary is generated in the install tree.

5. The component framework provides support for custom build steps, using the make _object and make properties. The results
of these custom build steps can either be object files that should end up in alibrary, or other files such as a linker script. It is
possible to control the order in which these custom build steps take place, for example it is possible to run a particular build
step before any of the compilations happen.

Configurable Source Code

All packages should be totally portable to al target hardware (with the obvious exceptions of HAL and device driver packages).
They should also be totally bug-free, require the absolute minimum amount of code and data space, be so efficient that cpu time
usage is negligible, and provide lots of configuration options so that application developers have full control over the behavior.
The configuration options are optional only if a package can meet the requirements of every potential application without any
overheads. It is not the purpose of this guide to explain how to achieve all of these requirements.

The eCos component framework does have some important implications for the source code: compiler flag dependencies; package
interfaces vs. implementations; and how configuration options affect source code.

Compiler Flag Dependencies

Wherever possible component writers should avoid dependencies on particular compiler flags. Any such dependencies are likely
to impact portability. For example, if one package needs to be built in big-endian mode and another package needs to be built in
little-endian mode then usually it will not be possible for application developersto use both packages at the same time; in addition
the application devel oper isno longer given achoicein thematter. Itisfar better for the package source code to adapt the endianness
at compile-time, or possibly at run-time although that will involve code-size overheads.

@ Note
A related issue is that the current support for handling compiler flags in the component framework is still limited
and incapable of handling flags at a very fine-grain. The support is likely to be enhanced in future versions of the
framework, but there are non-trivial problems to be resolved.

Package Interfaces and Implementations

The component framework provides encapsulation at the package level. A package A has no way of accessing the implementation
details of another package B at compile-time. In particular, if there is a private header file somewhere in a package's sr ¢ sub-
directory then thisheader fileiscompletely invisibleto other packages. Any attemptsto cheat by using rel ative pathnames beginning
with. . /.. aregenerally doomed to failure because of the presence of package version directories. There are two waysin which
one package can affect another: by means of the exported header files, which define a public interface; or viathe CDL scripts.

This encapsulation is a deliberate aspect of the overall eCos component framework design. In most cases it does not cause any
problems for component writers. In some cases enforcing a clean separation between interface and implementation details can
improve the code. Also it reduces problems when a package gets upgraded: component writers are free to do pretty much anything
on the implementation side, including renaming every single source file; care has to be taken only with the exported header files
and with the CDL data, because those have the potential of impacting other packages. Application codeissimilarly unableto access
package implementation details, only the exported interface.

Very occasionally the inability of one package to see implementation details of another does cause problems. One example occurs
in HAL packages, where it may be desirable for the architectural, variant and platform HAL 'sto share someinformation that should
not be visible to other packages or to application code. This may be addressed in the future by introducing the concept of f r i end
packages, just as a C++ class can have f ri end functions and classes which are allowed special accessto aclassinternals. It is
not yet clear whether such cases are sufficiently frequent to warrant introducing such afacility.

12

Package Organization

Source Code and Configuration Options

Configurability usually involves source code that needs to implement different behavior depending on the settings of configuration
options. It is possible to write packages where the only consequence associated with various configuration options is to control
what gets built, but this approach islimited and does not allow for fine-grained configurability. There are three main waysin which
options could affect source code at build time:

1. The component code can be passed through a suitable preprocessor, either an existing one such as m4 or a new one specially
designed with configurability in mind. The original sourceswould reside in the component repository and the processed sources
would reside in the build tree. These processed sources can then be compiled in the usual way.

This approach has two main advantages. First, it isindependent from the programming language used to code the components,
provided reasonable precautions are taken to avoid syntax clashes between preprocessor statements and actual code. Thiswould
make it easier in future to support languages other than C and C++. Second, configurable code can make use of advanced
preprocessing facilities such as loops and recursion. The disadvantage is that component writers would have to learn about a
new preprocessor and embed appropriate directives in the code. This makes it much more difficult to turn existing code into
components, and it involves extra training costs for the component writers.

2. Compiler optimizations can be used to elide code that should not be present, for example:

if (CYGHVR _NUMBER UARTS > 0) {

If the compiler knows that CYGHWR _NUVBER _UARTS is the constant number O then it is a trivia operation to get rid of the
unnecessary code. The component framework still hasto definethis symbol in away that is acceptable to the compiler, typically
by using aconst variable or a preprocessor symbol. In some respects this is a clean approach to configurability, but it has
limitations. It cannot be used in the declarations of data structures or classes, nor does it provide control over entire functions.
In addition it may not be immediately obvious that this code is affected by configuration options, which may make it more
difficult to understand.

3. Existing language preprocessors can be used. In the case of C or C++ thiswould be the standard C preprocessor, and configurable
code would contain anumber of #i f def and #i f statements.

#i f (CYGHWR_NUMBER_UARTS > 0)
#endi f

This approach has the big advantage that the C preprocessor is a technology that is both well-understood and widely used.
There are also disadvantages: it is not directly applicable to components written in other languages such as Java (although it is
possible to use the C preprocessor as a stand-alone program); the preprocessing facilities are rather limited, for examplethereis
no looping facility; and some people consider the technology to be ugly. Of course it may be possible to get around the second
objection by extending the preprocessor that is used by gcc and g++.

The current component framework generates configuration header files with C preprocessor #def i ne' s for each option (typi-
cally, there various properties which can be used to control this). It isup to component writersto decide whether to use preprocessor
#i f def statements or language constructs such asi f . At present there is no support for languages which do not involve the C
preprocessor, athough such support can be added in future when the need arises.

Exported Header Files

A package's exported header files should specify the interface provided by that package, and avoid any implementation details.
However there may be performance or other reasons why implementation details occasionally need to be present in the exported
headers.

13

Package Organization

@ Note
Not all programming languages have the concept of a header file. In some cases the component framework would
need extensions to support packages written in such languages.

Configurability has a number of effects on the way exported header files should be written. There may be configuration options
which affect the interface of a package, not just the implementation. It is necessary to worry about nested #i ncl ude' s and how
this affects package and application builds. A special case of thisrelatesto whether or not exported header files should #i ncl ude
configuration headers. These configuration headers are exported, but should only be #i ncl ude' d when necessary.

Configurable Functionality

Many configuration options affect only the implementation of a package, not the interface. However some options will affect
the interface as well, which means that the options have to be tested in the exported header files. Some implementation choices,
for example whether or not a particular function should be inlined, also need to be tested in the header file because of language
limitations.

Consider a configuration option CYGFUN_KERNEL _MUTEX_ Tl MEDLOCK which controls whether or not a function cyg_mu-
t ex_ti medl ock isprovided. The exported kernel header filecyg/ ker nel / kapi . h could contain the following:

#i ncl ude <pkgconf/kernel . h>

#i f def CYGFUN_KERNEL_MUJUTEX_TI MEDLOCK
extern bool cyg_nutex_ti medl ock(cyg_mutex_t*);
#endi f

Thisis a correct header file, in that it defines the exact interface provided by the package at all times. However is has a number
of implications. First, the header file is now dependent on pkgconf / ker nel . h, so any changesto kernel configuration options
will cause cyg/ ker nel / kapi . h to be out of date, and any source files that use the kernel interface will need rebuilding. This
may affect sources in the kernel package, in other packages, and in application source code. Second, if the application makes use
of this function somewhere but the application developer has misconfigured the system and disabled this functionality anyway
then there will now be a compile-time error when building the application. Note that other packages should not be affected, since
they should impose appropriate constraints on CYGFUN_KERNEL _MUTEX_TI MEDLOCK if they use that functionality (although
of course some dependencies like this may get missed by component devel opers).

An alternative approach would be:

extern bool cyg_nutex_tinmedl ock(cyg_nutex_t*)

Effectively the header file is now lying about the functionality provided by the package. The first result is that thereis no longer a
dependency on the kernel configuration header. The second result is that an application file using the timed-lock function will now
compile, but the application will fail to link. At this stage the application developer till hasto intervene, change the configuration,
and rebuild the system. However no application recompilations are necessary, just arelink.

Theoretically it would be possible for atool to analyze linker errors and suggest possible configuration changes that would resolve
the problem, reducing the burden on the application developer. No such tool is planned in the short term.

It is up to component writers to decide which of these two approaches should be preferred. Note that it is not always possible to
avoid #i ncl ude' i ng a configuration header file in an exported one, for example an option may affect a data structure rather
than just the presence or absence of a function. Issueslike thiswill vary from package to package.

Nested #i ncl ude' s

Asagenera rule, unnecessary #i ncl ude' s should beavoided. A header fileshould#i ncl ude only those header fileswhich are
absolutely needed for it to defineitsinterface. Any additional #i ncl ude' s makeit morelikely that package or application source
files become dependent on configuration header filesand will get rebuilt unnecessarily when there are minor configuration changes.

14

Package Organization

Including Configuration Headers

Exported header files should avoid #i ncl ude' i ng configuration header files unless absolutely necessary, to avoid unnecessary
rebuilding of both application code and other packages when there are minor configuration changes. A #i ncl ude isneeded only
when a configuration option affects the exported interface, or when it affects some implementation details which is controlled by
the header file such as whether or not a particular function gets inlined.

There are a couple of ways in which the problem of unnecessary rebuilding could be addressed. The first would require more
intelligent handling of header file dependency handling by the tools (especially the compiler) and the build system. This would
require changesto various non-eCostools. An alternative approach would be to support finer-grained configuration header files, for
exampletherecould beafilepkgconf /1 i bc/ i nl i ne. h controlling which functions should beinlined. Thiscould be achieved
by some fairly simple extensions to the component framework, but it makes it more difficult to get the package header files and
source code correct; a C preprocessor #i f def directive does not distinguish between a symbol not being defined because the
optionisdisabled, or the symbol not being defined because the appropriate configuration header file hasnot been #i ncl ude' d. It
islikely that across-referencing tool would have to be devel oped first to catch problems like this, before the component framework
could support finer-grained configuration headers.

Package Documentation

On-line package documentation should bein HTML format. The component framework imposes no special limitations: component
writers can decide which version of the HTML specification should be followed; they can also decide on how best to cope with
the limitations of different browsers. In general it isagood idea to keep things simple.

Test Cases

Packages should normally come with one or more test cases. This allows application developers to verify that a given package
works correctly on their particular hardware and in their particular configuration, making it slightly more likely that they will
attempt to find bugs in their own code rather than automatically blaming the component writers.

At the time of writing the application developer support for building and running test cases viathe component framework is under
review and likely to change. Currently each test case should consist of a single C or C++ source file that can be compiled with
the package's set of compiler flags and linked like any application program. Each test case should use the testing API defined by
the infrastructure. A magically-named calculated configuration option of the form CYGPKG_<PACKAGE- NAVE>_ TESTS lists
the test cases.

Host-side Support

On occasion it would be useful for an eCos package to be shipped with host-side support. This could take the form of an additional
tool needed to build that package. It could be an application intended to communicate with the target-side package code and display
monitoring information. It could be a utility needed for running the package test cases, especially in the case of device drivers.
The component framework does not yet provide any such support for host-side software, and there are obvious issues related to
portability to the different machines that can be used for hosts. Thisissue may get addressed in some future release. In some cases
custom build steps can be subverted to do things on the host side rather than the target side, but thisis not recommended.

Making a Package Distribution

Developers of new eCos packages are advised to distribute their packages in the form of eCos package distribution files. Packages
distributed in this format may be added to existing eCos component repositories in a robust manner using the Package Adminis-
tration Tool. This chapter describes the format of package distribution files and details how to prepare an eCos package for distri-
bution in this format.

15

Package Organization

The eCos package distribution file format

eCos package distribution files are gzipped GNU tar archives which contain both the source code for one or more eCos packages
and a data file containing package information to be added to the component repository database. The distribution files are subject
to the following rules:

a. The datafile must be named pkgadd. db and must be located in the root of the tar archive. It must contain data in a format
suitable for appending to the eCos repository database (ecos.db). the section called “Updating the ecos.db database” describes
this data format. Note that a database consistency check is performed by the eCos Administration Tool when pkgadd. db has
been appended to the database. Any new target entries which refer to unknown packages will be removed at this stage.

b. The package source code must be placed in oneor more<package- pat h>/ <ver si on> directoriesin thetar archive, where
each <package-path> directory path is specified as the directory attribute of one of the packages entriesin pkgadd. db.

c. An optiona license agreement file named pkgadd. t xt may be placed in the root of the tar archive. It should contain text
with amaximum line length of 79 characters. If this file exists, the contents will be presented to the user during installation of
the package. The eCos Package Administration Tool will then prompt the user with the question " Do you accept al |
the terns of the preceding |icense agreenent?". Theuser must respond "yes" to this prompt in order
to proceed with the installation.

d. Optional template files may be placed in one or moret enpl at es/ <t enpl at e_nane> directories in the tar archive. Note
that such template fileswould be appropriate only where the packages to be distributed have acomplex dependency relationship
with other packages. Typically, athird party package can be simply added to an eCos configuration based on an existing core
template and the provision of new templates would not be appropriate.

e. Thedistribution file must be givena. epk (not. t ar. gz) file extension. The. epk file extension servesto distinguish eCos
package distributions files from generic gzipped GNU tar archives. It also discourages users from attempting to extract the
package from the archive manually. The file browsing dialog of the eCos Package Administration Tool lists only those files
which havea. epk extension.

f. No other files should be present in the archive.

0. Filesinthetar archivemay use LF or CRLF line endingsinterchangably. The eCos Administration Tool ensuresthat theinstalled
files are given the appropriate host-specific line endings.

h. Binary files may be placed in the archive, but the distribution of object code is not recommended. All binary files must be
given a. bi n suffix in addition to any file extension they may already have. For example, the GIF image filemyfi |l e. gi f
must be named nyfi | e. gi f. bi ninthearchive. The. bi n suffix isremoved during file extraction and is used to inhibit the
manipulation of line endings by the eCos Administration Tool.

Preparing eCos packages for distribution

Development of new eCos packages or new versions of existing eCos packages will take place in the context of an existing eCos
component repository. This section details the steps involved in extracting new packages from a repository and generating a cor-
responding eCos package distribution file for distribution of the packages to other eCos users. The steps required are as follows:

a. Createatemporary directory $PKGTMP for manipulation of the package distribution file contents and copy the sourcefilesof the
new packages into thisdirectory, preserving the rel ative path to the package. In the case of anew package at nypkg/ cur r ent
in the repository:

$ nkdir -p $PKGTMP/ nypkg
$ cp -p -R $ECCS _REPCSI TORY/ mypkg/ current $PKGTMP/ nypkg

Where more than one package isto be distributed in a single package distribution file, copy each package in the above manner.
Note that multiple packages distributed in asingle package distribution file cannot beinstalled separately. Where such flexibility
isrequired, distribution of each new package in separate package distribution filesis recommended.

16

Package Organization

b.

*» ¥

o

d.

@ &~

*» ¥

j-
$
$

Copy any template files associated with the distributed packages into the temporary directory, preserving the relative path to
the template. For example:

nkdi r -p $PKGTMP/ t enpl at es
cp -p -R $ECOS_REPCSI TORY/ t enpl at es/ myt enpl at e $PKGTMP/ t enpl at es

Remove any files from the temporary directory hierarchy which you do not want to distribute with the packages (eg object
files, CVS directories).

Add a. bi n suffix to the name of any binary files. For example, if the packages contains GIF image files (*.gif) for documen-
tation purposes, such files must be renamed to *.gif.bin as follows:

find $PKGTMP -type f -nane '*.gif' -exec nv {} {}.bin ';"'

The. bi n suffix isremoved during file extraction and is used to inhibit the manipulation of line endings by the eCos Package
Administration Tool.

. Extract the package records for the new packages from the package database file at $ECOS_REPOSITORY /ecos.db and create

anew file containing these records at $PKGTMP/ pkgadd. db (in the root of the temporary directory hierarchy). Any target
records which reference the distributed packages must also be provided in pkgadd.db.

. Renametheversion directoriesunder $PKGTMP (typically cur r ent during development) to reflect the versions of the packages

you are distributing. For example, version 1.0 of a package may use the version directory namev1_O:

cd $PKGTMP/ nypkg
m/ current v1_0

the section called “ Package Versioning” describes the version naming conventions.

. Renameany templatefilesunder SPKGTMP (typically cur r ent . ect during development) to reflect the version of thetemplate

you are distributing. For example, version 1.0 of atemplate may use the filenamev1_ 0. ect :

cd $PKGTMP/ t enpl at es/ nyt enpl at e
mv current.ect vi1_0. ect

Itisalso important to edit the contents of the template file, changing the version of each referenced package to match that of the
packages you are distributing. This step will eliminate version warnings during the subsequent loading of the template.

Optionally create a licence agreement file at $PKGTMP/ pkgadd. t xt containing the licensing terms under which you are
distributing the new packages. Limit each line in thisfile to a maximum of 79 characters.

Create a GNU tar archive of the temporary directory hierarchy. By convention, this archive would have a name of the form
<package_name>- <ver si on>:

cd $PKGTMP
tar chf nypkg-1.0.tar *

Note that non-GNU version of tar may create archive files which exhibit subtle incompatibilities with GNU tar. For this reason,
alwaysuse GNU tar to create the archivefile. In addition, for atruly portable archive, the archive must not contain any symbolic
references as not all systems support these. The -h (--dereference) flag must therefore be included when creating the archive to
ensure the file the symbolic link pointsto is archived and not the symbolic link.

Compress the archive using gzip and give the resulting filea. epk file extension:

gzip nmypkg-1.0.tar
mv/ nypkg-1.0.tar.gz nypkg-1. 0. epk

The resulting eCos package distribution file (*.epk) isin a compressed format and may be distributed without further compres-
sion.

17

Chapter 3. The CDL Language

The CDL language is a key part of the eCos component framework. All packages must come with at least one CDL script, to
describe that package to the framework. The information in that script includes details of al the configuration options and how
to build the package. Implementing a new component or turning some existing code into an eCos component always involves
writing corresponding CDL. This chapter provides a description of the CDL language. Detailed information on specific parts of
the language can be found in Chapter 5, CDL Language Specification.

Language Overview

A very simple CDL script would look like this:

cdl _package CYGPKG ERROR {

di spl ay "Conmon error code support"

conpi l e strerror.cxx

include_dir cygl/error

description
Thi s package contains the common |ist of error and
status codes. It is held centrally to allow
packages to interchange error codes and status
codes in a common way, rather than each package
having its own conventions for error/status
reporting. The error codes are nodel |l ed on the
PGSl X style naming e.g. EINVAL etc. This package
al so provides the standard strerror() function to
convert error codes to textual representation.”

}

This describes a single package, the error code package, which does not have any sub-components or configuration options. The
package has an internal name, CYGPKG_ERROR, which can be referenced in other CDL scriptsusing e.g. r equi res CYGP-
KG_ERROR. There will also be a#def i ne for this symbol in a configuration header file. In addition to the package name, this
script provides anumber of propertiesfor the package asawhole. The display property providesashort description. The description
property involves arather longer one, for when users need a bit more information. The compile and include_dir properties|list the
consequences of this package at build-time. The package appears to lack any on-line documentation.

Packages could be even simpler than this. If the package only provides an interface and there are no files to be compiled then there
isno need for acompile property. Alternatively if there are no exported header files, or if the exported header files should go to the
top-level of thei nst al | /i ncl ude directory, then thereisno need for aninclude_dir property. Strictly speaking the description
and display properties are optional aswell, although application developers would not appreciate the resulting lack of information
about what the package is supposed to do.

However many packages tend to be a bit more complicated than the error package, containing various sub-components and con-
figuration options. These are also defined in the CDL scripts and in much the same way as the package. For example, the following
excerpt comes from the infrastructure package:

cdl _conponent CYGDBG_| NFRA DEBUG TRACE ASSERT BUFFER {

di spl ay "Buffered tracing"
defaul t _value 1
active_if CYGDBG_USE_TRACI NG

description
An out put nodul e which buffers output fromtraci ng and
assertion events. The stored nessages are output when an
assert fires, or CYG TRACE_PRINT() (defined in
<cyg/infra/cyg_trac.h>) is called. O course, there wll
only be stored nessages if tracing per se (CYGDBG USE_TRACH NG
i s enabl ed above. "

cdl _opti on CYGDBG | NFRA_DEBUG TRACE BUFFER _SI ZE {
di spl ay "Trace buffer size"

18

The CDL Language

flavor dat a

def aul t _val ue 32

| egal _values 5 to 65535

description
The size of the trace buffer. This counts the nunber of
trace records stored. Wen the buffer fills it either
wraps, stops recording, or generates output."

}

Likeacdl package,acdl conmponent hasaname and a body. The body contains various properties for that component,
and may aso contain sub-components or options. Similarly acdl _opt i on has a name and a body of properties. This example
lists a number of new properties: default_value, active if, flavor and legal_values. The meaning of most of these should be fairly
obvious. The next sections describe the various CDL commands and properties.

Thereisone additional and very important point: CDL is not acompletely new language; instead it isimplemented as an extension
of the existing Tcl scripting language. The syntax of a CDL script is Tcl syntax, which is described below. In addition some of
the more advanced facilities of CDL involve embedded fragments of Tcl code, for example thereis a define_proc property which
specifies some code that needs to be executed when the component framework generates the configuration header files.

CDL Commands

There are four CDL-related commands which can occur at the top-level of a CDL script: cdl _package, cdl _conponent,
cdl _option andcdl _i nterface. These correspond to the basic building blocks of the language (CDL interfaces are de-
scribed in the section called “Interfaces’). All of these take the same basic form:

cdl _package <nane> {

-

cdl _conmponent <nane> {

-

cdl _option <nane> {

cdl _interface <nane> {
}

The command is followed by a name and by a body of properties, the latter enclosed in braces. Packages and components can
contain other entities, so thecdl _package and cdl _conponent can aso have nested commands in their bodies. All names
must be unique within agiven configuration. If say the C library package and a TCP/IP stack both defined an option with the same
name then it would not be possible to load both of them into a single configuration. There is a naming convention which should
make accidental name clashes very unlikely.

It is possible for two packages to use the same name if there are no reasonable circumstances under which both packages could
be loaded at the same time. One example would be architectural HAL packages: a given eCos configuration can be used on only
one processor, so the architectural HAL packages CYGPKG_HAL _ARMand CYGPKG _HAL | 386 can re-use option names; in fact
in some cases they are expected to.

Each package has one top-level CDL script, which is specified in the packages ecos.db database entry. Typically the name of this
top-level scriptisrelated to the package, so the kernel package usesker nel . cdl , but thisisjust aconvention. Thefirst command
in the top-level script should be cdl _package, and the name used should be the same as in the ecos.db database. There should
be only onecdl _package command per package.

Thevarious CDL entitieslive in ahierarchy. For example the kernel package contains a scheduling component, a synchronization
primitives component, and a number of others. The synchronization component contains various options such as whether or not
mutex priority inheritance is enabled. There is no upper bound on how far components can be nested, but it is rarely necessary to

19

The CDL Language

go more than three or four levels deeper than the package level. Since the naming convention incorporates bits of the hierarchy,
this has the added advantage of keeping the names down to a more manageable size.

The hierarchy servestwo purposes. It alows optionsto be controlled en masse, so disabling a component automatically disables all
theoptionsbelow itinthehierarchy. It also permitsamuch simpler representation of the configuration in the graphical configuration
tool, facilitating navigation and modification.

By default a package is placed at the top-level of the hierarchy, but it is possible to override this using a parent property. For
example an architectural HAL package such as CYGPKG_HAL _SHtypically re-parentsitself below CYGPKG_HAL, and aplatform
HAL package would then re-parent itself below the architectural HAL. Thismakesit alittle bit easier for users to navigate around
the hierarchy. Components, options and interfaces can also be re-parented, but thisisless common.

All components, options and interfaces that are defined directly in the top-level script will be placed below the package in the
hierarchy. Alternatively they can be nested in the body of the cdl _package command. The following two script fragments are
equivalent:

cdl _package CYGPKG LI BC {

}
cdl _conmponent CYGPKG_ LI BC_STRI NG {

}
cdl _option CYGPKG LI BC_CTYPE | NLI NES {

}
and:
cdl _package CYGPKG LI BC {

cdl _conmponent CYGPKG_LI BC_STRI NG {

}
cdl _option CYGPKG LI BC_CTYPE | NLI NES {

}
}

If a script defines options both inside and outside the body of the cdl _package then the ones inside will be processed first.
Language purists may argue that it would have been better if all contained options and components had to go into the body, but in
practice it is often convenient to be able to skip this level of nesting and the resulting behavior is still well-defined.

Components can aso contain options and other CDL entities, in fact that is what distinguishes them from options. These can be
defined in the body of thecdl _conponent command:

cdl _conmponent CYGPKG_ LI BC_STDI O {
cdl _conmponent CYGPKG LI BC_STDI O _FLOATI NG PO NT {

}
cdl _option CYGSEM LI BC_STDI O THREAD SAFE_STREAMS {

}
}

Nesting options inside the bodies of components like thisis fine for simple packages with only alimited number of configuration
options, but it becomes unsatisfactory as the number of optionsincreases. Instead it is possible to split the CDL data into multiple
CDL scripts, on a per-component basis. The script property should be used for this. For example, in the case of the C library all
stdio-related configuration options could be put into st di 0. cdl , and the top-level CDL script | i bc. cdl would contain the
following:

cdl _package CYGPKG LI BC {

20

The CDL Language

cdl _conmponent CYGPKG_ LI BC_STDI O {

script stdio. cdl

}
}

The CYGPKG_LI BC _STDI O FLOATI NG_PO NT component and the CYGSEM LI BC_STDI O THREAD SAFE STREAMS
option can then be placed at the top-level of st di 0. cdl . It is possible to have some options nested in the body of acdl _com

ponent command and other options in a separate file accessed by the script property. In such a case the nested options would be
processed first, and then the other script would be read in. A script specified by a script property should only define new options,
components or interfaces: it should not contain any additional properties for the current component.

Itispossiblefor acomponent's CDL script to have asub-component which al so has a script property, and so on. In practice excessive
nesting like thisis rarely useful. It is also possible to ignore the CDL language support for constructing hierarchies automatically
and use the parent property explicitly for every single option and component. Again thisis not generally useful.

@ Note
At the time of writing interfaces cannot act as containers. This may change in a future version of the component
framework. If the change is made then interfaces would support the script property, just like components.

CDL Properties

Each package, component, option, and interface hasabody of properties, which providethe component framework with information
about how to handle each option. For example there is a property for a descriptive text message which can be displayed to a user
who istrying to figure out just what effect manipulating the option would have on the target application. There is another property
for the default value, for example whether a particular option should be enabled or disabled by default.

All of the properties are optional, it is legal to define a configuration option which has an empty body. However some properties
are more optional than others: users will not appreciate having to manipulate an option if they are not given any sort of description
or documentation. Other properties are intended only for very specific purposes, for example make_object and include files, and
are used only rarely.

Becausedifferent propertiesservevery different purposes, their syntax isnot asuniform asthetop-level commands. Someproperties
takeno argumentsat all. Other propertiestake asingle argument such as adescription string, or alist of arguments such asacompile
property which specifies thefile or files that should be compiled if a given option is active and enabled. The define_proc property
takes as argument a snippet of Tcl code. The active if, calculated, default value, legal _values and requires properties take various
expressions. Additional properties may be defined in future which take new kinds of arguments.

All property parsing code supports options for every property, although at present the majority of properties do not yet take any
options. Any initial arguments that begin with a hyphen character - will be interpreted as an option, for example:

cdl _package CYGPKG HAL_ARM {
make -priority 1 {

-
}

If the option involves additional data, as for the - pri ori t y example above, then this can be written as either - pri ori ty=1
oras-priority 1.0n occasiontheoption parsing code can get in the way, for example:

cdl _option CYGNUM LI BC TI ME_DST_DEFAULT_STATE {

|l egal _values -1 to 1
defaul t _value -1

21

The CDL Language

}

Neither the legal_values nor the default_value property will accept - 1 as avalid option, so thiswill result in syntax errors when
the CDL script is read in by the component framework. To avoid problems, the option parsing code will recognize the string - -
and will not attempt to interpret any subsequent arguments. Hence this option should be written as:

cdl _option CYGNUM LI BC TI ME_DST_DEFAULT_STATE {

legal _values -- -1to 1l
default_value -- -1

}

The property parsing code involves arecursive invocation of the Tcl interpreter that is used to parse the top-level commands. This
means that some characters in the body of an option will be treated specially. The # character can be used for comments. The
backslash character \ , the dollar character $, square brackets[and] , braces{ and }, and the quote character " may all receive
special treatment. Most of the time thisis not a problem because these characters are not useful for most properties. On occasion
having aTcl interpreter around performing the parser can be very powerful. For more details of how the presence of aTcl interpreter
can affect CDL scripts, see the section called “An Introduction to Tcl”.

Many of the properties can be used in any of cdl _package, cdl _conponent,cdl _optionorcdl _interface. Other
properties are more specific. The script property is only relevant to components. The define_header, hardware, include dir, in-
clude files, and library properties apply to a package asawhole, so can only occur inthebody of acdl _package command. The
calculated, default_value, legal_values and flavor properties are not rel evant to packages, aswill be explained later. The calculated
and default_value properties are also not relevant to interfaces.

This section lists the various properties, grouped by purpose. Each property also has a full reference page in Chapter 5, CDL
Language Specification. Properties related to values and expressions are described in more detail in the section called “Vaues and
Expressions’. Properties related to header file generation and to the build process are described in Chapter 4, The Build Process.

Information-providing Properties

Userscan only be expected to manipul ate configuration options sensibly if they are given sufficient information about these options.
There are three properties which serve to explain an option in plain text: the display property gives atextual alias for an option,
which is usually more comprehensible than something like CYGPKG_LI BC_TI ME_ZONES' ; the description property gives a
longer description, typically aparagraph or so; the doc property specifiesthelocation of additional on-line documentation related to
aconfiguration option. In the context of agraphical tool thedisplay string will bethe primary way for usersto identify configuration
options; the description paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requestsit.

cdl _package CYGPKG Ul TRON {

di spl ay "ul TRON conpatibility |ayer”

doc ref/ecos-ref.a. htm

description
eCos supports a ul TRON Conpatibility Layer, providing
full Level S (Standard) conpliance with Version 3.02 of
the ul TRON Standard, plus many Level E (Extended) features.
ul TRON i s the prem er Japanese enbedded RTCS standard.”

:

All three properties take a single argument. For display and description thisargument isjust a string. For doc it should be a pointer
to asuitable HTML file, optionally including an anchor within that page. If the directory layout conventions are observed then the
component framework will look for the HTML file in the package'sdoc sub-directory, otherwise the doc filename will be treated
asrelative to the package's top-level directory.

The Configuration Hierarchy

There are two properties related to the hierarchical organization of components and options: parent and script.

22

The CDL Language

The parent property can be used to move a CDL entity somewhere else in the hierarchy. The most common use is for packages,
to avoid having all the packages appear at the top-level of the configuration hierarchy. For example an architectural HAL package
such as CYGPKG_HAL _SHis placed below the common HAL package CYGPKG_HAL using a parent property.

cdl _package CYGPKG HAL_SH {
di spl ay "SH architecture"
par ent CYGPKG_HAL

-

The parent property can aso be used in the body of acdl _conponent, cdl _optionorcdl interface,butthisisless
common. However care has to be taken since excessive re-parenting can be confusing. Care also has to be taken when reparenting
below some other package that may not actually be loaded in a given configuration, since the resulting behavior is undefined.

Asaspecia casg, if the parent isthe empty string then the CDL entity isplaced at the root of the hierarchy. Thisisuseful for global
preferences, default compiler flags, and other settings that may affect every package.

The script property can only be used in the body of a cdl _conponent command. The property takes a single filename as
argument, and this should be another CDL script containing additional options, sub-components and interfaces that should go
below the current component in the hierarchy. If the directory layout conventions are observed then the component framework
will look for the specified file relative to the cdl subdirectory of the package, otherwise the filename will be treated as relative
to the package's top-level directory.

cdl _conmponent CYGPKG LI BC_STDI O {

di spl ay "Standard input/output functions"
flavor bool

requires CYGPKG_| O

requires CYGPKG_| O_SERI AL_HALDI AG

default _value 1
description

Thi s enabl es support for standard |/ O functions from <stdio. h>."
script stdi o. cdl

}

Value-related Properties

There are seven properties which are related to option values and state: flavor, calculated, default value, legal_values, active if,
implements, and requires. More detailed information can be found in the section called “Vaues and Expressions’.

In the context of configurability, the concept of an option's value is somewhat non-trivial. First an option may or may not be
loaded: it is possible to build a configuration which has the math library but not the kernel; however the math library's CDL
scripts still reference kernel options, for example CYGSEM LI BM THREAD SAFE_COVPAT _MODE has arequires constraint on
CYGVAR_KERNEL THREADS DATA. Even if an optionisloaded it may or may not be active, depending on what is happening
higher up in the hierarchy: if the C library's CYGPKG_LI BC_STDI O component is disabled then some other options such as
CYGNUM LI BC_STDI O BUFSI ZE become irrelevant. In addition each option has both a boolean enabled/disabled flag and a
data part. For many options only the boolean flag is of interest, while for others only the data part is of interest. The flavor property
can be used to control this:

flavor none This flavor indicates that neither the boolean nor the data parts are user-modifiable: the
option is always enabled and the datais always set to 1. The most common use for thisisto
have a component that just acts as a placeholder in the hierarchy, allowing various options
to be grouped below it.

flavor bool Only the boolean part of the option is user-modifiable. The data part isfixed at 1.
flavor data Only the data part of the option is user-modifiable. The boolean part isfixed at enabled.
flavor bool data Both the boolean and the data part of the option are user-modifiable.

23

The CDL Language

For more details of CDL flavors and how a flavor affects expression evaluation, and other consequences, see the section called
“Vauesand Expressions’. Theflavor property cannot be used for a package because packages aways havethebool dat a flavor.
Optionsand componentshavethebool flavor by default, since most configuration choices are simple yes-or-no choices. Interfaces
have the dat a flavor by default.

The calculated property can be used for options which should not be user-modifiable, but which instead are fixed by the target
hardware or determined from the current values of other options. In general cal culated options should be avoided, since they can be
confusing to users who need to figure out whether or not a particular option can actually be changed. There are a number of valid
uses for calculated options, and quite a few invalid ones as well. The reference packages should be consulted for further details.
The property takes an ordinary CDL expression as argument, for example:

A constant on sone target hardware, perhaps user-nodifiable on other

targets.

cdl _opti on CYGNUM HAL_RTC PERI OD {
di spl ay "Real -tinme clock period"
flavor dat a

cal cul at ed 12500
}

The calculated property cannot be used for packages or interfaces. The value of a package always corresponds to the version of
that package which is loaded, and this is under user control. Interfaces are implicitly calculated, based on the number of active
and enabled implementors.

The default_value property is similar to calculated, but only specifies a default value which users can modify. Again this property
is not relevant to packages or interfaces. A typical example would be:

cdl _opti on CYGDBG HAL_DEBUG GDB_THREAD_SUPPORT {
di spl ay "Include GDB multi-threadi ng debug support™
requires CYGDBG_KERNEL_DEBUG _GDB_THREAD_SUPPORT
def aul t _val ue CYGDBG_KERNEL_DEBUG GDB_THREAD_SUPPORT

:

The legal_values property imposes a constraint on the possible values of the data part of an option. Hence it is only applicable to
optionswith thedat a or bool dat a flavors. It cannot be used for a package since the only valid value for a packageisitsversion
number. The argumentsto the legal_values property should constitute a CDL list expression.

cdl _option CYGNUM LI BC TI ME_STD DEFAULT_OFFSET {

di spl ay "Default Standard Tinme offset"
flavor data

| egal _values -- -90000 to 90000
default_value -- 0

N

The active if property does not relate directly to an option's value, but rather to its active state. Usually thisis controlled via the
configuration hierarchy: if the CYGPKG LI BC_STDI O component is disabled then al options below it are inactive and do not
have any consequences. In some cases the hierarchy does not provide sufficient control, for example an option should only be
active if two digoint sets of conditions are satisfied: the hierarchy could be used for one of these conditions, and an additional
active_if property could be used for the other one. The argumentsto active if should constitute a CDL goal expression.

Do not provide extra semaphore debugging if there are no semaphores

cdl _option CYGDBG KERNEL | NSTRUMVENT BI NSEM {
active if CYGPKG KERNEL_SYNCH

-

Theimplementsproperty isrelated to the concept of CDL interfaces. If an option isactive and enabled and it implements a particul ar
interface then it contributes 1 to that interface's value.

cdl _package CYGPKG NET_EDB7XXX_ETH DRI VERS {
di spl ay "Cirrus Logic ethernet driver"

24

The CDL Language

i mpl ement s CYGHWR_NET_DRI VERS
i npl ement s CYGHWR_NET_DRI VER ETHO

,

The requires property is used to impose constraints on the user's choices. For example it is unreasonable to expect the C library to
provide thread-safe implementations of certain functions if the underlying kernel support has been disabled, or even if the kernel
isnot being used at all.

cdl _option CYGSEM LI BC_PER THREAD_ERRNO {

di spl ay "Per-thread errno"

doc ref/ecos-ref.15. htnl
requires CYGVAR_KERNEL_THREADS DATA
default_value 1

N

The arguments to the requires property should be a CDL goal expression.

Generating the Configuration Header Files

When creating or updating a build tree the component framework will also generate configuration header files, one per package. By
default it will generate a#def i ne for each option, component or interface that is active and enabled. For optionswiththedat a or
bool dat a flavorsthe#def i ne will usethe option's data part, otherwiseit will usethe constant 1. Typical output would include;

#define CYGFUN LI BC Tl ME_POSI X 1
#defi ne CYGNUM LI BC Tl ME_DST_DEFAULT STATE -1

There are six properties which can be used to control the header file generation process: define_header, no_define, define_format,
define, if _define, and define proc.

By default the component framework will generate a configuration header file for each package based on the package's name:
everything up to and including the first underscore is discarded, the rest of the name is lower-cased, and a. h suffix is appended.
For exampl e the configuration header filefor the kernel package CYGPKG_KERNEL ispkgconf / ker nel . h. Thedefine_header
property can be used to specify an alternative filename. This applies to al the components and options within a package, so it can
only beused inthe body of acdl _package command. For example the following specifies that the configuration header file for
the SPARCIite HAL packageispkgconf/ hal sparclite. h.

cdl _package CYGPKG HAL_SPARCLI TE {
di splay "SPARClite architecture"

par ent CYGPKG_HAL
har dwar e
define_header hal _sparclite.h

@ Note

At present the main use for the define_header property is related to hardware packages, see the reference pages for
more details.

The no_define property is used to suppress the generation of the default #def i ne. This can be useful if an option's consequences
are al related to the build process or to constraints, and the option is never actually checked in any source code. It can also be
useful in conjunction with the define, if_define or define_proc properties. The no_define property does not take any arguments.

cdl _conmponent CYG HAL_STARTUP {
di spl ay "Startup type"
flavor dat a
| egal _values { "RAM' "ROM' }
defaul t _val ue {"RAM'}

25

The CDL Language

no_defi ne
define -file systemh CYG HAL_STARTUP

,

This example also illustrates the define property, which can be used to generate a#def i ne in addition to the default one. It takes
asingle argument, the name of the symbol to be defined. It also takes options to control the configuration header file in which the
symbol should be defined and the format to be used.

Thedefine_format property can be used to control how the value part of the default #def i ne getsformatted. For example aformat
string of " 0x%®4x" could be used to generate a four-digit hexadecimal number.

Theif_define property isintended for use primarily to control assertions, tracing, and similar functionality. It supports a specific
implementation model for these, allowing control at the grain of packages or even individual source files. The reference pages
provide additional information.

The define_proc property provides an escape mechanism for those cases where something specia has to happen at configuration
header file generationtime. It takesasingle argument, afragment of Tcl code, which gets executed when the header fileis generated.
This code can output arbitrary datato the header file, or perform any other actions that might be appropriate.

Controlling what gets Built

There are six properties which affect the build process. compile, make, make object, library, include_dir, and include files. The
last three apply to a package as awhole, and can only occur in the body of acdl _package command.

Most of the source files that go into a package should ssimply be compiled with the appropriate compiler, selected by the target
architecture, and with the appropriate flags, with an additional set defined by the target hardware and possible modifications on a
per-package basis. The resulting object fileswill gointo thelibrary | i bt ar get . a, which can then be linked against application
code. The compile property is used to list these source files:

cdl _package CYGPKG ERROR {
di spl ay "Conmon error code support”
conpi l e strerror.cxx
include_dir cygl/error

:

The arguments to the compile property should be one or more source files. Typically most of the sources will be needed for the
package as a whole, and hence they will be listed in one or more compile properties in the body of the cdl _package. Some
sources may be specific to particular configuration options, in other words there is no point in compiling them unlessthat option is
enabled, in which case the sources should be listed in acompile property in the corresponding cdl _opt i on, cdl _conponent
orcdl _i nt erface body.

Some packages may have more complicated build requirements, for example they may involve a special target such as a linker
script which should not end up in the usual library, or they may involve special build steps for generating an object file. The make
and make_object properties provide support for such requirements, for example:

cdl _package CYGPKG HAL_IMN10300_AM33 {
di spl ay "MN10300 AMB3 vari ant"

make {
<PREFI X>/|i b/target.|d: <PACKAGE>/src/m10300_anB83.I1d
$(CC) -E -P -W, - VD, target.tnp - DEXTRAS=1 -xc $(| NCLUDE_PATH) \
$(CFLAGS) -0 $@ $<
@cho $@": \\" > $(notdir $@. deps
@ail +2 target.tnp >> $(notdir $@ . deps
@cho >> $(notdir $@ . deps
@mtarget.tnp

26

The CDL Language

}

For full details of custom build steps and the build process generally, see Chapter 4, The Build Process.

By default al object filesgo into the library | i bt ar get . a. It is possible to override this at the package level using the library
property, but this should be avoided since it complicates application development: instead of just linking with a single library for
all eCos-related packages, it suddenly becomes necessary to link with severa libraries.

Theinclude dir and include files properties relate to a package's exported header files. By default a package's header fileswill be
exported to thei nst al | /i ncl ude directory. Thisisthe desired behavior for some packages like the C library, since headers
likest di o. h should exist at that level. However if al header fileswereto end up in that directory then there would be asignificant
risk of aname clash. Instead it is better for packages to specify some sub-directory for their exported header files, for example:

cdl _package CYGPKG | NFRA {
di spl ay "I nfrastructure"
i ncl ude_dir cyg/infra

N

The various header files exported by the infrastructure, for example cyg_ass. h and cyg_trac. h will now end up in the
install/include/cyg/infra sub-directory, where aname clash isvery unlikely.

For packages which follow the directory layout conventions the component framework will assume that the package'si ncl ude
sub-directory contains all exported header files. If thisis not the case, for example because the package is sufficiently simple that
the layout convention is inappropriate, then the exported header files can be listed explicitly in an include _files property.

Miscellaneous Properties

Thehardware property isonly relevant to packages. Some packages such asdevice driversand HAL packagesare hardware-specific,
and generally it makes no sense to add such packagesto aconfiguration unless the corresponding hardware is present on your target
system. Typically hardware package selection happens automatically when you select your target. The hardware property should
be used to identify a hardware-specific package, and does not take any arguments.

cdl _package CYGPKG HAL_M PS {
di splay "M PS architecture"
par ent CYGPKG_HAL
har dwar e
i ncl ude_dir cyg/ hal
define_header hal _m ps.h

N

At present the hardware property is largely ignored by the component framework. This may change in future rel eases.

Option Naming Convention

All the options in a given configuration live in the same namespace. Furthermore it is not possible for two separate options to have
the same name, because this would make any references to those options in CDL expressions ambiguous. A haming convention
existsto avoid problems. It is recommended that component writers observe some or all of this convention to reduce the probability
of name clashes with other packages.

There is an important restriction on option names. Typically the component framework will output a#def i ne for every active
and enabled option, using the name as the symbol being defined. This requires that all names are valid C preprocessor symbols, a
limitation that is enforced even for options which have the no_define property. Preprocessor symbols can be any sequence of lower
caselettersa-z, upper caseletters, A-Z, the underscore character _, and thedigits0-9. Thefirst character must be anon-digit. Using
an underscore as the first character is discouraged, because that may clash with reserved language identifiers. In addition thereisa
convention that preprocessor symbols only use upper case | etters, and some component writers may wish to follow this convention.

27

The CDL Language

A typical option name could be something like CYGSEM KERNEL SCHED BI TMAP. Thisnameconsistsof several different parts:

1. The first few characters, in this case the three letters CYG, are used to identify the organization that produced the package.
For historical reasons packages produced by Red Hat tend to use the prefix CYGrather than RHAT. Component writers should
use their own prefix: even when cutting and pasting from an existing CDL script the prefix should be changed to something

appropriate to their organization.

It can be argued that a short prefix, often limited to upper case letters, is not sufficiently long to eliminate the possibility of
name clashes. A longer prefix could be used, for example one based on internet domain names. However the C preprocessor
has no concept of namespacesor i npor t directives, so it would always be necessary to use the full option namein component
source code which gets tedious - option names tend to be long enough as it is. There is a small increased risk of name clashes,

but this risk isfelt to be acceptable.

2. Thenext three charactersindicate the nature of the option, for example whether it affectstheinterface or just theimplementation.
A list of common tagsis given below.

3. The KERNEL_ SCHED part indicates the location of the option within the overall hierarchy. In this case the option is part of the
scheduling component of the kernel package. Having the hierarchy details as part of the option name can help in understanding
configurable code and further reduces the probability of a name clash.

4. Thefinal part, Bl TMAP, identifies the option itself.

Thethree-character tag isintended to provide some additional information about the nature of the option. There are anumber of pre-
defined tags. However for many options there is a choice: options related to the platform should normally use HAR, but numerical
options should normally use NUM a platform-related numerical option such as the size of an interrupt stack could therefore use
either tag. There are no absolute rules, and it is left to component writers to interpret the following guidelines:

XXXARC _

XXXHWR_

XXXPKG_

XXxGLO_

xxxDBG_

XXXTST_

XXXFUN_

XXXVAR

XXXCLS

The ARC tag is intended for options related to the processor architecture. Typicaly such
options will only occur in architectural or variant HAL packages.

The HAR tag is intended for options related to the specific target board. Typically such op-
tionswill only occur in platform HAL packages.

Thistag isintended for packages or components, in other words options which extend the
configuration hierarchy. Arguably a COMtag would be more appropriate for components,
but this could be confusing because of the considerable number of computing terms that
begin with com.

Thisisintended for global configuration options, especially preferences.

The DBG tag indicates that the option is in some way related to debugging, for example it
may enable assertions in some part of the system.

Thistag isfor testing-related options. Typically these do not affect actual application code,
instead they control the interaction between target-side test cases and a host-side testing
infrastructure.

Thisisfor configuration options which affect theinterface of apackage. There are anumber
of related tag which are also interface-related. xxxFUN_ is intended primarily for options
that control whether or not one or more functions are provided by the package, but can also
be used if none of the other interface-related tags is applicable.

This is analogous to FUN but controls the presence or absence of one or more variables or
objects.

The CLS tag is intended only for packages that provide an object-oriented interface, and
controls the presence or absence of an entire class.

28

The CDL Language

XXXMFN_ Thisisalso for object-orientated interfaces, and indicates the presence or absence of amem-
ber function rather than an entire class.

XXX SEM_ A SEMoption does not affect the interface (or if does affect theinterface, thisisincidental).
Instead it is used for options which have afundamental effect on the semantic behavior of a
package. For examplethe choice of kernel schedulersis semantic in nature: it does not affect
theinterface, in particular thefunctioncyg_t hr ead_cr eat e existsirrespective of which
scheduler has been selected. However it does have a major impact on the system's behavior.

XXX MP_ I MP is for implementation options. These do not affect either the interface or the semantic
behavior (with the possible exception of timing-related changes). A typical implementation
option controls whether or not a particular function or set of functions should get inlined.

XXX NUM Thistag isfor numerical options, for example the number of scheduling priority levels.

XXX DAT_ Thisisfor dataitemsthat are not numerical in nature, for example a device name.

XXXBLD The BLD tag indicates an option that affects the build process, for example compiler flag
settings.

XXX NT_ Thisshould normally be used for CDL interfaces, whichisalanguage construct that islargely

independent from the interface exported by a package viaits header files. For more details
of CDL interfaces see the section called “Interfaces’.

XXXPRI This tag is not normally used for configuration options. Instead it is used by CDL scripts
to pass additional private information to the source code via the configuration header files,
typically inside a define_proc property.

XXXSRC _ Thistag is not normally used for configuration options. Instead it can be used by package
source code to interact with such options, especially in the context of theif _define property.

There is one specia case of a potential name clash that is worth mentioning here. When the component framework generates a
configuration header file for a given package, by default it will use a name derived from the package name (the define_header
property can be used to override this). The file name is constructed from the package name by removing everything up to and
including the first underscore, converting the remainder of the name to lower case, and appending a . h suffix. For example the
kernel package CYGPKG_KERNEL will involve a header file pkgconf / ker nel . h. If a configuration contained some other
package XYZPKG_KERNEL then this would attempt to use the same configuration header file, with unfortunate effects. Case
sensitivity could introduce problems aswell, so apackagexyzpkg_ker nel would involve the same problem. Even if the header
file names preserved the case of the package name, not all file systems are case sensitive. Thereisno simple solution to thisproblem.
Changing the names of the generated configuration header files would involve a major incompatible change to the interface, to
solve a problem which is essentially hypothetical in nature.

An Introduction to Tcl

All CDL scripts are implemented as Tcl scripts, and are read in by running the data through a standard Tcl interpreter, extended
with a small number of additional commands such as cdl _opti on and cdl _conponent . Often it is not necessary to know
the full details of Tcl syntax. Instead it is possible to copy an existing script, perform some copy and paste operations, and make
appropriate changes to names and to various properties. However there are also cases where an understanding of Tcl syntax is
very desirable, for example:

cdl _opti on CYGDAT_U TRON_MEMPOOLFI XED_EXTERNS {
di spl ay "Externs for initialization"
flavor dat a
default _val ue {"static char fpool1[2000], \\\n\
fpool 2[2000], \\\n\
f pool 3[2000];"}

29

The CDL Language

}

This causes the cdl _opt i on command to be executed, which in turn evaluates its body in a recursive invocation of the Tcl
interpreter. When the default_value property is encountered the braces around the value part are processed by the interpreter,
stopping it from doing further processing of the braced contents (except for backslash processing at the end of aline, that is special).
In particular it prevents command substitution for [2000] . A single argument will be passed to the default_value command
which expects a CDL expression, so the expression parsing code is passed the following:

"static char fpool 1[2000], \\\n fpool 2[2000], \\\n fpool 3[2000];"

The CDL expression parsing code will treat this as asimple string constant, as opposed to a more complicated expression involving
other options and various operators. The string parsing code will perform the usual backslash substitutions so the actual default
valuewill be:

static char fpool 1[2000], \
f pool 2[2000], \
f pool 3[2000];

If the user does not modify the option's value then the following will be generated in the appropriate configuration header file:

#defi ne CYGDAT_U TRON_MEMPOOLFI XED EXTERNS static char fpool 1[2000], \
fpool 2[2000], \
f pool 3[2000];

Getting thisdesired result usually requires an understanding of both Tcl syntax and CDL expression syntax. Sometimesit ispossible
to substitute a certain amount of trial and error instead, but this may prove frustrating. It is aso worth pointing out that many CDL
scriptsdo not involvethislevel of complexity. On the other hand, some of the more advanced features of the CDL language involve
fragments of Tcl code, for example the define_proc property. To use these component writers will need to know about the full
Tcl language as well as the syntax.

Although the current example may seem to suggest that Tcl israther complicated, it isactually avery simpleyet powerful scripting
language: the syntax is defined by just eleven rules. On occasion this simplicity means that Tcl's behavior is subtly different from
other languages, which can confuse newcomers.

When the Tcl interpreter is passed some data such asput s Hel | o, it splits this data into a command and its arguments. The
command will be terminated by a newline or by a semicolon, unless one of the quoting mechanisms is used. The command and
each of its arguments are separated by white space. So in the following example:

puts Hello
set x 42

Thiswill result in two separate commands being executed. The first command is put s and is passed a single argument, Hel | o.
The second command is set and is passed two arguments, X and 42. The intervening newline character serves to terminate the
first command, and a semi-colon separator could be used instead:

puts Hello;set x 42
Any white space surrounding the semicolon is just ignored because it does not serve to separate arguments.

Now consider the following:

set x Hello world

Thisis not valid Tcl. It is an attempt to invoke the set command with three arguments: x, Hel | o, and wor | d. The set only
takes two arguments, a variable name and avalue, so it is necessary to combine the data into a single argument by quoting:

set x "Hello world"

When the Tcl interpreter encountersthe first quote character it treats all subsequent data up to but not including the closing quote as
part of the current argument. The quote marks are removed by the interpreter, so the second argument passed to theset command
isjust Hel I o wor | d without the quote characters. This can be significant in the context of CDL scripts. For example:

cdl _opti on CYG HAL_STARTUP {

30

The CDL Language

def aul t _val ue "RAM'
}

The Tcl interpreter strips off the quote marks so the CDL expression parsing code sees RAMinstead of " RAM' . It will treat thisas
areference to some unknown option RAMrather than as a string constant, and the expression evaluation code will use avalue of 0
when it encounters an option that is not currently loaded. Therefore the option CYG_HAL_ STARTUP ends up with adefault value
of 0. Either braces or backslashes should be used to avoid this, for exampledef aul t _val ue { "RAM' }.

@ Note
There are long-term plans to implement some sort of CDL validation utility cdllint which could catch common errors
like this one.

A quoted argument continues until the closing quote character is encountered, which meansthat it can span multiple lines. Newline
or semicolon characters do not terminate the current command in such cases. description properties usually make use of this:

cdl _package CYGPKG ERROR {
description

Thi s package contains the common |ist of error and
status codes. It is held centrally to allow
packages to interchange error codes and status
codes in a comon way, rather than each package
having its own conventions for error/status
reporting. The error codes are nodel |l ed on the
PGSl X style naming e.g. EINVAL etc. This package
al so provides the standard strerror() function to
convert error codes to textual representation.”

:

The Tcl interpreter supports much the same forms of backslash substitution as other common programming languages. Some
backslash sequences such as \ n will be replaced by the appropriate character. The sequence \\ will be replaced by a single
backslash. A backslash at the very end of aline will cause that backslash, the newline character, and any white space at the start of
the next line to be replaced by a single space. Hence the following two Tcl commands are equivalent:

puts “Hello\nworld\n"

puts \
"Hell o

wor | d

If adescription string needs to contain quote marks or other special characters then backslash escapes can be used. In addition to
guote and backslash characters, the Tcl interpreter treats square brackets, the $ character, and braces specialy. Square brackets
are used for command substitution, for example:

puts "The answer is [expr 6 * 9]"

When the Tcl interpreter encounters the square brackets it will treat the contents as another command that should be executed
first, and the result of executing that is used when continuing to process the script. In this case the Tcl interpreter will execute the
command expr 6 * 9,yielding aresult of 42 L and then the Tl interpreter will execute puts " The answer is 42".
It should be noted that the interpreter performs only one level of substitution: if the result of performing command substitution
performs further special characters such as square brackets then these will not be treated specially.

Command substitution will not prove useful for many CDL scripts, except for e.g. adefine_proc property which involvesafragment
of Tcl code. Potentially there are some interesting uses, for example to internationalize display strings. However care does have to
be taken to avoid unexpected command substitution, for example if an option description involves square brackets then typically
these would require backslash-escapes.

htis possible that some versions of the Tcl interpreter will instead produce aresult of 54 when asked to multiply six by nine. Appropriate reference documentation
should be consulted for more information on why 42 isin fact the correct answer.

31

http://www.douglasadams.com/creations/hhgg.html

The CDL Language

The $ character is used in Tcl scriptsto perform variable substitution:

set x [expr 6 * 9]
puts "The answer is $x"

Variable substitution, like command substitution, is unlikely to prove useful for many CDL scripts except in the context of Tcl
fragments. If it is necessary to have a$ character then a backslash escape may have to be used.

Braces are used to collect a sequence of charactersinto asingle argument, just like quotes. The differenceisthat variable, command
and backslash substitution do not occur inside braces (with the sole exception of backslash substitution at the end of a line).
Therefore given alinein a CDL script such as:

def aul t _val ue {"RAM'}

The braces are stripped off by the Tcl interpreter, leaving " RAM' which will be handled as a string constant by the expression
parsing code. The same effect could be achieved using one of the following:

defaul t _val ue \"RAM'
default_val ue "\"RAM""

Generally the use of bracesisless confusing. At this stageit isworth noting that the basic format of CDL data makes use of braces:
cdl _option <nane> {
b

Thecdl _opt i on command is passed two arguments, aname and a body, where the body consists of everything inside the braces
but not the braces themselves. This body can then be executed in a recursive invocation of the Tcl interpreter. If a CDL script
contains mismatched braces then the interpreter is likely to get rather confused and the resulting diagnostics may be difficult to
understand.

Commentsin Tcl scripts are introduced by a hash character #. However, a hash character only introduces a comment if it occurs
where a command is expected. Consider the following:

This is a comment
puts "Hello" # world

Thefirst lineisavalid comment, since the hash character occurs right at the start where acommand name is expected. The second
line does not contain a comment. Instead it is an attempt to invoke the put s command with three arguments: Hel | o, # and
wor | d. These are not valid arguments for the put s command so an error will be raised. If the second line was rewritten as:

puts "Hello"; # world

then thisis a valid Tcl script. The semicolon identifies the end of the current command, so the hash character occurs at a point
where the next command would start and hence it isinterpreted as the start of a comment.

This handling of comments can lead to subtle behavior. Consider the following:

cdl _opti on WHATEVER {
This is a coment }
default_value 0

N

Consider the way the Tcl interpreter processes this. The command name and the first argument do not pose any special difficulties.
The opening braceisinterpreted asthe start of the next argument, which continues until a closing brace is encountered. In this case
the closing brace occurs on the second line, so the second argument passedtocdl _opti onis\ n # This is a conment.
This second argument is processed in a recursive invocation of the Tcl interpreter and does not contain any commands, just a
comment. Top-level script processing then resumes, and the next command that is encountered isdef aul t _val ue. Since the
parser is not currently processing a configuration option this is an error. Later on the Tcl interpreter would encounter a closing
brace by itself, which isalso an error.

32

The CDL Language

For component writerswho need moreinformation about Tcl, especially about thelanguage rather than the syntax, variousresources
are available. A reasonable starting point is the Scriptics devel oper web site.

Values and Expressions

It is fairly reasonable to expect that enabling or disabling a configuration option such as CYGVAR_KERNEL THREADS DATA
in some way affects its value. This will have an effect on any expressions that reference this option such asr equi res CYG

VAR_KERNEL_THREADS DATA. It will also affect the consequences of that option: how it affects the build process and what
happens to any constraints that CYGVAR _KERNEL _THREADS DATA may impose (as opposed to constraints on this option im-
posed by others).

In alanguage like C the handling of variablesisrelatively straightforward. If avariable x gets referenced in an expression such as
if (x !'= 0),andthat variable is not defined anywhere, then the code will fail to build, typically with an unresolved error at
link-time. Alsoin C avariable x doesnot livein any hierarchy, so itsvalue for the purposes of expression evaluation is not affected
by anything else. C variables also have aclear typesuch asi nt orl ong doubl e.

In CDL things are not so straightforward.

Option Values

There are four factors which go into an option's value:

1. Anoption may or may not be loaded.

2. If the option isloaded, it may or may not be active.

3. Evenif the option is active, it may or may not be enabled.

4. If the option isloaded, active and enabled then it will have some associated data which constitutes its value.

Is the Option Loaded?

At any one time a configuration will contain only a subset of all possible packages. In fact it is impossible to combine certain
packages in a single configuration. For example architectural HAL packages should contain a set of options defining endianness,
the sizes of basic data types and so on (many of which will of course be constant for any given architecture). Any attempt to load
two architectural HAL packages into a configuration will fail because of the resulting name clash. Since CDL expressions can
reference options in other packages, and often need to do so, it is essential to define the resulting behavior.

One complication is that the component framework does not know about every single option in every single package. Obviously
it cannot know about packages from arbitrary third parties which have not been installed. Even for packages which have been
installed, the current repository database does not hold details of every option, only of the packagesthemselves. If aCDL expression
contains a reference to some option CYGSEM_KERNEL _SCHED_TI MESLI CE then the component framework will only know
about thisoptionif thekernel packageisactually loaded into the current configuration. If the packageisnot loaded then theoretically
the framework might guess that the option is somehow related to the kernel by examining the option name but this would not be
robust: the option could easily be part of some other package that violates the naming convention.

Assume that the user is building aminimal configuration which does not contain the kernel package, but does have other packages
which contain the following constraints:

requi res CYGPKG_KERNEL
requires CYGPKG KERNEL THREADS DATA
requires ! CYGSEM KERNEL SCHED TI MESLI CE

Clearly the first constraint is not satisfied because the kernel is not loaded. The second constraint is also not satisfied. The third
congtraint istrivially satisfied: if there is no kernel then the kernel's timeslicing support cannot possibly be enabled.

Any options which are not in the current configuration are handled as follows:

33

http://www.tcl.tk/scripting/

The CDL Language

1. Any references to that option will evaluateto 0, sor equi res ! CYGSEM KERNEL SCHED TI MESLI CE will be satisfied
but r equi res CYGSEM KERNEL THREADS DATA will not be satisfied.

2. An option that is not loaded has no consequences on the build process. It cannot directly result in any #def i ne' s in acon-
figuration header file, nor in any files being compiled. Thisis only reasonable: if the option is not loaded then the component
framework has no way of knowing about any compile or similar properties. An option that is not loaded can have indirect
conseguences by being referenced in CDL expressions.

3. An option that is not loaded cannot impose any constraints on the rest of the configuration. Again this is the only reasonable
behavior: if the option is not loaded then any associated requires or legal_values properties will not be known.

Is the Option Active

The next issue to consider is whether or not a particular option is active. Configuration options are organized in a hierarchy of
components and sub-components. For example the C library package contains a component CYGPKG LI BC_STDI Ocontaining
all the options related to standard 1/0. If a user disables the component as a whole then all the options below it become inactive:
it makes no sense to disable all stdio functionality and then manipulate the buffer sizes.

Inactive is not quite the same as disabled, although the effects are similar. The value of an inactive option is preserved. If the user
modifies a buffer size option, then disables the whole stdio component, the buffer size value remainsin case the stdio component
is re-enabled later on. Some tools such as the graphical configuration tool will treat inactive options specially, for example such
options may be grayed out.

The active or inactive state of an option may affect other packages. For example a package may use the spri nt f function and
require support for floating point conversions, a constraint that is not satisfied if the relevant option isinactive. It is necessary to
define exactly what it means for an option to be inactive:

1. An option is inactive if its parent is either inactive or disabled. For example if CYGPKG LI BC_STDI Ois disabled then
all the options and sub-components become inactive; since CYGPKG_LI BC_STDI O FLQOATI NG_PO NT is now inactive,
CYGSEM LI BC_STDI O PRI NTF_FLQOATI NG_PO NT isinactive as well.

2. Options may also be inactive as aresult of an active if property. Thisis useful if a particular option is only relevant if two or
more disjoint sets of conditions need to be satisfied, since the hierarchical structure can only cope with at most one such set.

3. If an option isinactive then any references to that option in CDL expressions will evaluate to 0. Hence a constraint of the form
requi res CYGSEM LI BC _STDI O PRI NTF_FLQATI NG_PQO NT isnot satisfied if the entire stdio component is disabled.

4. An option that is inactive has no consequences on the build process. No #def i ne will be generated. Any compile or similar
properties will be ignored.

5. An option that is inactive cannot impose any constraints on the rest of the configuration. For example CYGSEM LI BC_ST-
DI O PRI NTF_FLOATI NG_PA NT has a dependency r equi res CYGPKG_LI BM but if al of the stdio functionality is
disabled then this constraint is ignored (although of course there may be other packages which have a dependency on CYGP-
KG_LI BM

Is the Option Enabled? What is the Data?

The majority of configuration options are boolean in nature, so the user can either enable or disable some functionality.
Some options are different. For example CYGNUM LI BC_STDI O_BUFSI ZE is a number, and CYGDAT_LI BC_STDI O DE-

FAULT_CONSOLE isastring corresponding to a device name. A few options like CYGDAT_Ul TRON_TASK EXTERNS can get
very complicated. CDL hasto cope with this variety, and define the exact behavior of the system in terms of constraints and build-
time consequences.

In CDL the value of an option consists of two parts. There is a boolean part, controlling whether or not the option is enabled.
Thereisalso adata part, providing additional information. For most options one of these partsisfixed, as controlled by the option's
flavor property:

The CDL Language

Flavor Enabled Data

none Always enabled 1, not modifiable
bool User-modifiable 1, not modifiable
dat a Always enabled User-modifiable
bool dat a User-modifiable User-modifiable

The effects of the boolean and data parts are as follows:

1

If an option is disabled, in other words if the boolean part is false, then any references to that option in CDL expressions will
evaluate to 0. This is the same behavior as for inactive options. The data part is not relevant. The none and dat a flavors
specify that the option is aways enabled, in which case thisrule is not applicable.

. If an option is enabled then any referencesto that option in CDL expressions will evauate to the option's data part. For two of

the flavors, none and bool , thisdata part is fixed to the constant 1 which generally has the expected result.

. If acomponent or package is disabled then all sub-components and optionsimmediately below it in the hierarchy are inactive.

By aprocess of recursion thiswill affect all the nodes in the subtree.

. If an option is disabled then it can impose no constraints on the rest of the configuration, in particular requires and legal_values

properties will be ignored. If an option is enabled then its constraints should be satisfied, or the component framework will
report various conflicts. Note that the legal_values constraint only applies to the data part of the option's value, so it is only
useful withthedat a and bool dat a flavors. Optionswith thenone and dat a flavors are always enabled so their constraints
always have to be satisfied (assuming the option is active).

. If an option is disabled then it has no direct consequences at build-time: no #def i ne will be generated, no files will get

compiled, and so on. If an option is active and enabled then all the consequences take effect. The option name and data part are
used to generate the #def i ne in the appropriate configuration header file, subject to various properties such as no_define, but
the data part has no other effects on the build system.

By default all options and components havethebool flavor: most options are boolean in nature, so making thisthe default allows
for dlightly more compact CDL scripts. Packages havethebool dat a flavor, wherethe data part always correspondsto the version
of the package that is loaded into the configuration: changing this value corresponds to unloading the old version and loading in
adifferent one.

@ CDL Flavors
The concept of CDL flavors tends to result in various discussions about why it is unnecessarily complicated, and

would it not have been easier to do ... However there are very good reasons why CDL works the way it does.

The first common suggestion is that there is no need to have separate flavors bool , dat a, and so on. A boolean
option could just be handled as a data option with legal values 0 and 1. The counter arguments are as follows:

1. It would actually make CDL scripts more verbose. By default all options and components have the bool flavor,
since most options are boolean in nature. Without abool flavor it would be necessary to indicate explicitly what
the legal values are somehow, e.g. with alegal_values property.

2. The boolean part of an option's value has a very different effect from the data part. If an option is disabled then it
has no consequences at build time, and can impose no constraints. A dat a option always has consequences and
can impose constraints. To get the desired effect it would be necessary to add CDL dataindicating that avalue of O
should be treated specially. Arguably this could be made built-in default behavior, although that would complicate
options where 0 is a perfectly legal number, for example CYGNUM_LI BC_TI ME_STD DEFAULT_OFFSET.

3. There would no replacement for abool dat a option for which 0 is avalid value. Again some additional CDL
syntax would be needed to express such a concept.

35

The CDL Language

CYG Ul T_TASK("t1",
CYG Ul T_TASK("t2",
CYG Ul T_TASK("t3",
CYG Ul T_TASK("t4",

Although initially it may seem confusing that an option's value has both a boolean and a data part, it is an accurate
reflection of how configuration options actually work. The various alternatives would all make it harder to write
CDL scripts.

The next common suggestion isthat the data part of a value should be typed in much the same way as C or C++ data
types. For example it should be possible to describe CYGNUM LI BC_STDI O_BUFSI ZE as an integer value, rather
than imposing legal_values constraints. Again there are very good reasons why this approach was not taken:

1. The possible lega values for an integer are rarely correct for a CDL option. A constraint such as
1 to Ox7fffffff isabit moreaccurate athough if thisoptionindicatesabuffer sizeitisstill not particularly
good — very few targets will have enough memory for such abuffer. Forcing CDL writersto list the legal_values
constraints explicitly should make them think a bit more about what values are actually sensible. For example
CYGNUM LI BC_TI ME_DST_DEFAULT_OFFSET has lega valuesin the range - 90000 t o 90000, which
helps the user to set a sensible value.

2. Not all options correspond to simple datatypes such asintegers. CYGDAT_LI BC_STDI O DEFAULT _CONSOLE
isa C string, and would have to be expressed using something like char [] . This introduces plenty of oppor-
tunities for confusion, especially since square brackets may get processed by the Tcl interpreter for command
substitution.

3. Some configuration options can get very complicated indeed, for example the default value of CYG
DAT_Ul TRON_TASK_I NI Tl ALI ZERSiis:

taskl, &stackl, CYGNUM U TRON STACK SIZE), \
task2, &stack2, CYGNUM Ul TRON STACK SIZE), \
task3, &stack3, CYGNUM U TRON STACK SIZE), \
task4, &stack4, CYGNUM U TRON_STACK S| ZE)

S OWNL=

This would require CDL knowing about C macros, structures, arrays, static initializers, and so on. Adding such
detailed knowledge about the C language to the component framework is inappropriate.

4. CDL needs to be usable with languages other than C. At present this includes C++, in future it may include
languages such as Java. Each language adds new data types and related complications, for example C++ classes
and inheritance. Making CDL support aunion of all datatypesin all possible languagesis not sensible.

The CDL approach of treating all data as a sequence of characters, possibly constrained by alegal _values property
or other means, has the great advantage of simplicity. It also fitsin with the Tcl language that underlies CDL.

Some Examples

The following excerpt from the C library's CDL scripts can be used to illustrate how values and flavors work in practice:

cdl _conponent CYGPKG_ LI BC_RAND {

flavor none

conpi l e stdli b/ rand. cxx

cdl _option CYGSEM LI BC_PER THREAD RAND {
requires CYGVAR_KERNEL_THREADS_DATA

}

default_value 0

cdl _option CYGNUM LI BC RAND SEED {

}

flavor

dat a

legal _values O to Ox7fffffff
default _value 1

cdl _option CYGNUM LI BC RAND TRACE LEVEL {

}

flavor

dat a

legal _values 0 to 1
default_value 0

36

The CDL Language

}

If the application does not require any C library functionality then it is possible to have a configuration where the C library is not
loaded. This can be achieved by starting with the minimal template, or by starting with another template such asthe default one and
then explicitly unloading the C library package. If this package is not loaded then any references to the CYGPKG_LI BC_RAND
component or any of itsoptionswill have avalue of O for the purposes of expression evaluation. No#def i ne' s will be generated
for the component or any of its options, and the file st dl i b/ r and. cxx will not get compiled. There is nothing special about
the C library here, exactly the same would apply for say a device driver that does not correspond to any of the devices on the
target hardware.

Assuming the C library is loaded, the next thing to consider is whether or not the component and its options are active. The
component is layered immediately below the C library package itself, so if the package is loaded then it is safe to assume that the
package is also enabled. Therefore the parent of CYGPKG_LI BC_RAND s active and enabled, and in the absence of any active _if
properties CYGPKG_LI BC_RAND will be active aswell.

The component CYGPKG LI BC_RAND has the flavor none. This means the component cannot be disabled. Therefore al the
optionsin thiscomponent have an active and enabled parent, and in the absence of any active if propertiesthey areall activeaswell.

The component's flavor none serves to group together all of the configuration options related to random number generation. This
is particularly useful in the context of the graphical configuration tool, but it also helpswhen it comes to naming the options: all of
the options begin with CYGxxx_LI BC_RAND, giving aclear hint about both the package and the component within that package.
The flavor means that the component is always enabled and has the value 1 for the purposes of expression evaluation. There will
alwaysbe asingle#def i ne of theform:

#defi ne CYGPKG LI BC_RAND 1

In additionthefilest dl i b/ r and. cxx will always get built. If the component had the default bool flavor then users would be
able to disable the whole component, and one less file would need to be built. However random number generation is relatively
simple, so the impact on eCos build times are small. Furthermore by default the code has no dependencies on other parts of the
system, so compiling the code has no unexpected side effects. Even if it was possible to disable the component, the sensible default
for most applications would still leave it enabled. The net result is that the flavor none is probably the most sensible one for this
component. For other components the default bool flavor or one of the other flavors might be more appropriate.

Next consider option CYGSEM LI BC_PER THREAD RAND which can be used to get a per-thread random number seed, possibly
useful if the application needs a consistent sequence of random numbers. In the absence of aflavor property this option will be
boolean, and the default_value property meansthat it is disabled by default — reasonable since few applications need this particul ar
functionality, and it does impose a constraint on the rest of the system. If the option is left disabled then no #def i ne will be
generated, and if there were any compile or similar properties these would not take effect. If the optionisenabled then a#def i ne
will be generated, using the option's data part which isfixed at 1:

#def i ne CYGSEM LI BC_PER THREAD_RAND 1

The CYGSEM LI BC_PER_THREAD_RAND option has a requires constraint on CYGVAR_KERNEL _THREADS_DATA. If the C
library option is enabled then the constraint should be satisfied, or else the configuration contains a conflict. If the configuration
doesnot includethe kernel packagethen CYGVAR _KERNEL THREADS DATAwill evaluateto O and the constraint isnot satisfied.
Similarly if the option isinactive or disabled the constraint will not be satisfied.

CYGNUM LI BC_RAND SEED and CYGNUM LI BC_RAND TRACE_LEVEL both have the dat a flavor, so they are aways en-
abled and the component framework will generate appropriate #def i ne' s:

#defi ne CYGNUM LI BC_RAND_SEED 1
#defi ne CYGNUM LI BC_RAND_SEED 1
#defi ne CYGNUM LI BC_RAND TRACE _LEVEL 0
#defi ne CYGNUM LI BC_RAND TRACE LEVEL_0

Neither option has a compile or similar property, but any such properties would take effect. Any references to these
options in CDL expressions would evaluate to the data part, so a hypothetical constraint of the form { re-
qui res CYGNUM LI BC_ RAND SEED > 42 } would not be satisfied with the default values. Both options use a simple

37

The CDL Language

constant for the default_value expression. It would be possible to use a more complicated expression, for example the default for
CYGNUM LI BC_RAND TRACE LEVEL could be determined from some global debugging option or from a debugging option
that appliesto the C library as awhole. Both options also have alegal _values constraint, which must be satisfied since the options
are active and enabled.

@ Note
The value 0 islegal for both CYGNUM LI BC_RAND_SEED and CYGNUM LI BC_RAND TRACE LEVEL, soina
CDL expression there is no easy way of distinguishing between the options being absent or having that particular
value. Thiswill be addressed by future enhancements to the expression syntax.

Ordinary Expressions

Expressionsin CDL follow a conventional syntax, for example:

def aul t _val ue CYGGLO_CODESI ZE > CYGG.O_SPEED
defaul t _val ue { (CYG HAL_STARTUP == "RAM' &&
! CYGDBG_HAL_DEBUG GDB_| NCLUDE_STUBS &&
I CYG NT_HAL_USE_ROM MONI TOR_UNSUPPORTED &&
| CYGSEM HAL_POWNERPC _COPY_VECTORS) ? 1 : 0}
default _value { "\"/dev/serO\"" }

However thereisacomplicationinthat the variousargumentsto adefault_value property will first get processed by aTcl interpreter,
so specia characters like quotes and sgquare brackets may get processed. Such problems can be avoided by enclosing non-trivial
expressions in braces, as in the second example above. The way expression parsing actually worksis as follows:

1. The Tcl interpreter splits the line or lines into a command and its arguments. In the first default value expression above the
command isdef aul t _val ue and there are three arguments, CYGGELO_CODESI ZE, > and CYGGE.O_SPEED. In the second
and third examples there is just one argument, courtesy of the braces.

2. Next option processing takes place, so any initial arguments that begin with a hyphen will be interpreted as options. This can
cause problemsif the expressioninvolves anegative number, so the special argument - - can be used to prevent option processing
on the subsequent arguments.

3. All of the arguments are now concatenated, with a single space in between each one. Hence the following two expressions are
equivalent, even though they will have been processed differently up to this point.

def aul t _val ue CYGELO_CODESI ZE > CYGG.O_SPEED
def aul t _val ue { CYGGLO_CODESI ZE > CYGGLO_SPEED}

4. The expression parsing code now has a single string to process.

CDL expressions consist of four types of element: references to configuration options, constant strings, integers, and floating point
numbers. These are combined using a conventional set of operators: the unary operators- , ~ and! ; the arithmetic operators +, - ,
* | and % the shift operators << and >>; the comparison operators==, | =, <, <=, > and >=; the bitwise operators &, * and | ; the
logical operators && and | | ; the string concatenation operator . ; and the ternary conditional operator A ? B : C. Thereisaso
support for some less widely available operatorsfor logical equivalence and implication, and for aset of function-style operations.
Bracketed sub-expressions are supported, and the operators have the usual precedence:

Priority Operators Category
16 references, constants basic elements
15 f(a, b, c) function calls
14 ~ bitwise not
14 ! logical not
14 - arithmetic negation

38

The CDL Language

Priority Operators Category
13 * | % multiplicative arithmetic
12 + - . additive arithmetic and

string concatenation

11 << >> bitwise shifts
10 <= < > >= inequality
9 = I= comparison
8 & bitwise and
7 A bitwise xor
6 [bitwise or
5 && logical and
4 |] logical or
3 xor, eqv logical equivalance
2 i mplies logical implication
1 ? conditional

Function calls have the usual format of a name, an opening bracket, one or more arguments separated by commas, and a closing
bracket. For example:

requires { 'is_substr(CYGBLD GLOBAL_CFLAGS, " -fno-rtti") }

Functions will differ in the number of arguments and may impose restrictions on some or al of their arguments. For example it
may be necessary for the first argument to be a reference to a configuration option. The available functions are described in the
section called “Functions’.

Thelogical xor operator evaluatesto trueif either the left hand side or the right hand side but not both evaluate to true The logical
eqv operator evaluates to true if both the left and right hand sides evaluate to true, or if both evaluate to false. Thei npl i es
operator evaluates to true either if the left hand side is false or if the right hand side is true, in other words A i npl i es B has
thesamemeaningas! A | | B. Anexample use would be:

requires { is_active(CYGNUM LI BC_MAI N_ DEFAULT_STACK_SI ZE) inplies
(CYGNUM LI BC_MAI N_DEFAULT_STACK_SI ZE >= (16 * 1024)) }

This constraint would be satisfied if either the support for amain stack size is disabled, or if that stack is at least 16K. However
if such a stack werein use but was too small, a conflict would be raised.

A valid CDL identifier in an expression, for example CYGGLO_SPEED, will be interpreted as areference to a configuration option
by that name. The option does not have to be loaded into the current configuration. When the component framework eval uates the
expression it will substitute in a suitable value that depends on whether or not the option isloaded, active, and enabled. The exact
rules are described in the section called “ Option Vaues'.

A constant string is any sequence of characters enclosed in quotes. Care has to be taken that these quotes are not stripped off by
the Tcl interpreter before the CDL expression parser sees them. Consider the following:

def aul t _val ue "RAM'

The quote markswill be stripped beforethe CDL expression parser seesthe data, so the expression will beinterpreted asareference
to a configuration option RAM There is unlikely to be such an option, so the actual default value will be 0. Careful use of braces
or other Tcl quoting mechanisms can be used to avoid such problems.

String constants consist of the data inside the quotes. If the data itself needs to contain quote characters then appropriate quoting
is again necessary, for example:

39

The CDL Language

default _value { "\"/dev/serO\"" }

An integer constant consists of a sequence of digits, optionally preceeded with the unary + or - operators. As usual the sequence
Ox or 0X can be used for hexadecimal data, and aleading O indicates octal data. Internally the component framework uses 64-bit
arithmetic for integer data. If aconstant istoo large then double precision arithmetic will be used instead. Traditional syntax isalso
used for double precision numbers, for example 3. 141592 or - 3E6.

Of course this is not completely accurate: CDL is not atyped language, all datais treated as if it were a string. For example the
following two lines are equivalent:

requi res CYGNUM U TRON_SEMAS > 10
requi res { CYGNUM U TRON_SEMAS > "10" }

When an expression gets evaluated the operators will attempt appropriate conversions. The > comparison operator can be used
on either integer or double precision numbers, so it will begin by attempting a string to integer conversion of both operands. If
that fails it will attempt string to double conversions. If that fails as well then the component framework will report a conflict, an
evaluation exception. If the conversions from string to integer are successful then the result will be either the string O or the string
1, both of which can be converted to integers or doubles as required.

It isworth noting that the expression CYGNUM Ul TRON_SEMAS >10 isnot ambiguous. CDL identifiers can never begin with a
digit, soitisnot possible for 10 to be misinterpreted as areference to an identifier instead of as a string.

Of course the implementation is slightly different again. The CDL language definition is such that all dataistreated asif it werea
string, with conversions to integer, double or boolean as and when required. The implementation is allowed to avoid conversions
until they are necessary. For example, given CYGNUM U TRON_SEMAS > 10 the expression parsing code will perform an
immediate conversion from string to integer, storing the integer representation, and there is no need for a conversion by the com-
parison operator when the expression gets evaluated. Given{ CYGNUM Ul TRON_SEMAS > "10" 1} the parsing code will
store the string representation and a conversion happens the first time the expression is evaluated. All of thisis an implementation
detail, and does not affect the semantics of the language.

Different operators have different requirements, for example the bitwise or operator only makes sense if both operands have an
integer representation. For operators which can work with either integer or double precision numbers, integer arithmetic will be
preferred.

Thefollowing operatorsonly accept integer operands: unary ~ (bitwisenot), the shift operators << and >>, and the bitwise operators
&, | and”™.

The following operators will attempt integer arithmetic first, then double precision arithmetic: unary - , the arithmetic operators +,
-, *, 1, and % and the comparision operators <, <=, > and >=.

The equality == and inequality ! = operators will first attempt integer conversion and comparison. If that fails then double preci-
sion will be attempted (although arguably using these operators on double precision data is not sensible). As alast resort string
comparison will be used.

The operators ! , & and | | al work with boolean data. Any string that can be converted to the integer O or the double 0. 0 is
treated asfalse, asisthe empty string or the constant string f al se. Anything elseisinterpreted astrue. Theresultiseither O or 1.

The conditional operator ? : will interpret its first operand as a boolean. It does not perform any processing on the second or
third operands.

In practiceit is rarely necessary to worry about any of these details. In nearly every case CDL expressions just work as expected,
and there is no need to understand the full details.

@ Note
The current expression syntax does not meet al the needs of component writers. Some future enhancements will
definitely be made, others are more controversial. The list includes the following:

40

The CDL Language

K

. Anoption'svalueis determined by several different factors: whether or not it isloaded, whether or not it is active,

whether or not it isenabled, and the data part. Currently thereis no way of querying theseindividually. Thisisvery
significant in the context of optionswiththebool orbool dat a flavors, becausethereisno way of distinguishing
between the option being absent/inactive/disabled or it being enabled with adatafield of 0. There should be unary
operators that allow any of the factors to be checked.

. Only the==and ! = operators can be used for string data. More string-related facilities are needed.
. Animplies operator would be useful for many goal expression, where A i nmpl i es Bisequivalentto! A | | B.

. Similarly thereisinadequate support for lists. On occasion it would be useful to write expressionsinvolving say the

list of implementors of agiven CDL interface, for example asensible default value could be thefirst implementor.
Associated with thisis aneed for an indirection operator.

. Arguably extending the basic CDL expression syntax with lots of new operators is unnecessary, instead expres-

sions should just support Tcl command substitution and then component writers could escape into Tcl scripts for
complicated operations. This has some major disadvantages. First, the inference engine would no longer have
any sensible way of interpreting an expression to resolve a conflict. Second, the component framework's value
propagation code keeps track of which options get referenced in which expressions and avoids unnecessary re-
evaluation of expressions; if expressions can involve arbitrary Tcl code then there is no simple way to eliminate
unnecessary recal culations, with a potentially major impact on performance.

Note

The current implementation of the component framework uses 64 bit arithmetic on al host platforms. Although this
isadequate for current target architectures, it may cause problemsin future. At some stageit islikely that an arbitrary
precision integer arithmetic package will be used instead.

Functions

CDL expressions can contain callsto a set of built-in functions using the usual syntax, for example;

requires { !is_substr(CYGBLD GLOBAL_CFLAGS, "-fno-rtti") }

The available function calls are as follows:

get _dat a(opti on) This function can be used to obtain just the data part of a loaded configuration option, ig-

noring other factors such as whether or not the option is active and enabled. It takes a sin-
gle argument which should be the name of a configuration option. If the specified option
is not loaded in the current configuration then the function returns O, otherwise it returns
the data part. Typically this function will only be used in conjunction withi s_acti ve
andi s_enabl ed for fine-grained control over the various factors that make up an option's
value.

is_active(option) This function can be used to determine whether or not a particular configuration option is

active. It takes a single argument which should be the name of an option, and returns a
boolean. If the specified option is not loaded then the function will return false. Otherwise
it will consider the state of the option's parents and evaluate any active_if properties, and
return the option's current active state. A typical use might be:

requires { is_active(CYGNUM LI BC_MAI N DEFAULT_STACK_ SI ZE) inplies
(CYGNUM _LI BC_MAI N_DEFAULT_STACK_SI ZE >= (16 * 1024)) }

In other words either the specified configuration option must be inactive, for example be-
cause the current application does not use any related C library or POSIX functionality, or
the stack size must be at least 16K.

41

The CDL Language

i s_enabl ed(option)

i s_| oaded(option)

requi res { CYGPKG _KERNEL }
requires { is_|oaded(CYGPKG KERNEL) }

i s_substr (haystack,
dl e)

i s_substr("abracadabra",
i s_substr("abracadabra", "
i s_substr("hocus pocus", "
i s_substr("abracadabra",

i s_substr("abracadabra", "

The configuration system's inference engine can attempt to satisfy constraints involving
i s_active invarious different ways, for example by enabling or disabling parent com-
ponents, or by examining active if properties and manipulating terms in the associated ex-
pressions.

This function can be used to determine whether or not a particular configuration option is
enabled. It takes a single argument which should be the name of an option, and returns a
boolean. If the specified option is not loaded then the function will return false. Otherwise
it will return the current boolean part of the option's value. The option's active or inactive
state isignored. Typically this function will be used in conjunction withi s_acti ve and
possibly get _dat a to provide fine-grained control over the various factors that make up
an option's value.

This function can be used to determine whether or not a particular configuration option is
loaded. It takes a single argument which should be the name of an option, and returns a
boolean. If the argument is a package then thei s_| oaded function provides little or no
extrainformation, for example the following two constraints are usually equivalent:

However if the specified package is |oaded but re-parented below a disabled component, or
inactiveasaresult of an active_if property, then the first constraint would not be satisfied but
the second constraint would. In other wordsthei s_| oaded makesit possible to consider
in isolation one of the factors that are considered when CDL expressions are eval uated.

The configuration system's inference engine will not automatically load or unload packages
tosatisfy i s_| oaded constraints.

nee- Thiscan be used to check whether or not a particular string is present in another string. It
is used mainly for manipulating compiler flags. The function takes two arguments, both of
which can be arbitrary expressions, and returns a boolean.
i s_subst r hassomeunderstanding of word boundaries. |f the second argument startswith
a space character then that will match either areal space or the start of the string. Similarly
if the second argument ends with a space character then that will match areal space or the
end of the string. For example, al of the following conditions are satisfied:
"abra")
abra")
pocus")
"abra ")
Thefirst isan exact match. The second isamatch because the leading space matchesthe start
of the string. The third is an exact match, with the leading space matching an actual space.
The fourth is a match because the trailing space matches the end of the string. However, the
following condition is not satisfied.
abra ")

Thisfailsto match at the start of the string because the trailing space is not matched by either
areal space or the end of the string. Similarly it fails to match at the end of the string.

If aconstraint involving i s_subst r is not satisfied and the first argument is a reference
to a configuration option, the inference engine will attempt to modify that option's value.
This can be achieved either by appending the second argument to the current value, or by
removing all occurrences of that argument from the current value.

42

The CDL Language

requires { !is_substr(CYGBLD GLOBAL_CFLAGS, " -fno-rtti ") }
requires { is_substr(CYGLD GLOBAL_CFLAGS, " -frtti ") }

When data is removed the leading and trailing spaces will be left. For example, given an
initial value of <CYGBLD_GLOBAL_CFLAGSof -g -fno-rtti - Q2 theresult will be
-g -2 rather than - g- O2.

If exact matches are needed, the functioni s_xsubst r can be used instead.

i s_xsub- Thisfunction checkswhether or not the pattern string isan exact substring of the string being

str(haystack, needle) searched. Itissimilartoi s_subst r but uses exact matching only. In other words, leading
or trailing spaces have to match exactly and will not match the beginning or end of the string
being searched. The function takes two arguments, both of which can be arbitrary expres-
sions, and returns a boolean. The difference between i s_substr andi s_xsubstr is
illustrated by the following examples:

cdl _opti on MAG C {
flavor data
defaul t _val ue { "abracadabra" }

}

requires { is_substr(MAGC, " abra") }
requires { is_xsubstr(MAAC, " abra") }

Thefirst goa will be satisfied because the leading spacein the pattern matches the beginning
of the string. The second goal will not be satisfied initialy because there is no exact match,
so the inference engine is likely to update the value of MAG Cto abr acadabra abra
which does give an exact match.

version_cnp(A, B) This function is used primarily to check that a sufficiently recent version of some other
package is being used. It takes two arguments, both of which can be arbitrary expressions.
In practice usually one of the arguments will be a reference to a package and the other will
be a constant version string. The return value is -1 if the first argument is a more recent
version then the second, O if the two arguments correspond to identical versions, and 1 if
the first argument is an older version. For example the following constraint can be used to
indicate that the current package depends on kernel functionality that only became available
inversion 1.3:

requires { version_cnp(CYGPKG KERNEL, "v1.3") <=0 }

@ Note
At thistimeit is not possible to define new functions inside a CDL script. Instead functions can only be added at
the C++ level, usually by extending libcdl itself. Thisis partly because there is more to CDL functions than simple
evaluation: associated with most functions is support for the inference engine, so that if a constraint involving a
function is not currently satisfied the system may be able to find a solution automatically.

Goal Expressions

The arguments to certain properties, notably requires and active if, constitute a goal expression. As with an ordinary expression,
all of the arguments get combined and then the expression parser takes over. The same care has to be taken with constant strings
and anything else that may get processed by the Tcl interpreter, so often a goal expression is enclosed entirely in braces and the
expression parsing code sees just a single argument.

A goal expression isbasically just a sequence of ordinary expressions, for example:

requires { CYGDBG HAL_DEBUG GDB_| NCLUDE_STUBS

43

The CDL Language

| CYGDBG_HAL_DEBUG GDB_BREAK_SUPPORT
| CYGDBG_HAL_DEBUG GDB_CTRLC SUPPORT }

This consists of three separate expressions, all of which should evaluate to a non-zero result. The same expression could be written
as.
requires { CYGDBG HAL_DEBUG GDB_| NCLUDE_STUBS &&

I CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT &&
| CYGDBG_HAL_DEBUG _GDB_CTRLC_SUPPORT }

Alternatively the following would have much the same effect:

requi res CYGDBG HAL_DEBUG GDB_| NCLUDE_STUBS
requi res ! CYGDBG _HAL_DEBUG GDB_BREAK_SUPPORT
requi res ! CYGDBG HAL_DEBUG GDB_CTRLC SUPPORT

Selecting between these alternatives is largely a stylistic choice. The first is slightly more concise than the others. The second is
more likely to appeal to mathematical purists. The third is more amenable to cutting and pasting.

Theresult of evaluating agoal expression isaboolean. If any part of the goal expression evaluatesto the integer O or an equivalent
string then the result is false, otherwiseit istrue.

The term “goal expression” relates to the component framework's inference engine: it is a description of a goa that should be
satisfied for a conflict-free configuration. If a requires constraint is not satisfied then the inference engine will examine the goa
expression: if there is some way of changing the configuration that does not introduce new conflicts and that will cause the goal
expression to evaluate to true, the conflict can be resolved.

Theinference engine workswith one conflict and hence one goal expression at atime. Thismeansthat there can be slightly different
behavior if a constraint is specified using a single requires property or several different ones. Given the above example, suppose
that none of the three conditions are satisfied. If asingle goal expression is used then the inference engine might be able to satisfy
only two of the three parts, but since the conflict as awhole cannot be resolved no part of the solution will be applied. Instead the
user will have to resolve the entire conflict. If three separate goal expressions are used then the inference engine might well find
solutions to two of them, leaving less work for the user. On the other hand, if a single goal expression is used then the inference
engine has a bit more information to work with, and it might well find a solution to the entire conflict where it would be unable
to find separate solutions for the three parts. Things can get very complicated, and in general component writers should not worry
about the subtleties of the inference engine and how to manipulate its behavior.

It is possible to write ambiguous goal expressions, for example:

requires CYGNUM LI BC_RAND SEED - CYGNUM LI BC_RAND TRACE LEVEL > 5

This could be parsed in two ways:

requires ((CYGNUM LI BC_RAND SEED - CYGNUM LI BC RAND TRACE LEVEL) > 5)
requi res CYGNUM LI BC RAND SEED && ((- CYGNUM LI BC_RAND TRACE LEVEL) > 5)

The goal expression parsing code will aways use the largest ordinary expression for each goal, so the first interpretation will be
used. In such casesit isagood ideato use brackets and avoid possible confusion.

List Expressions

The arguments to the legal_values property constitute a goal expression. As with an ordinary and goal expressions, al of the
arguments get combined and then the expression parser takes over. The same care hasto be taken with constant strings and anything
elsethat may get processed by the Tcl interpreter, so often alist expression is enclosed entirely in braces and the expression parsing
code sees just a single argument.

Most list expressions take one of two forms:

| egal _val ues <expr 1> <expr2> <expr3> ..
| egal _val ues <expr1l> to <expr2>

The CDL Language

expr 1, expr 2 and so on are ordinary expressions. Often these will be constants or references to calculated options in the archi-
tectural HAL package, but it is possible to use arbitrary expressions when necessary. The first syntax indicates a list of possible
values, which need not be numerical. The second syntax indicates a numerical range: both sides of the t o must evaluate to a
numerical value; if either sideinvolves afloating point number then any floating point number in that rangeislegal; otherwise only
integer values arelegal; rangesareinclusive, so 4 isavalid valuegiven alist expression 1 t o ;if oneor both sides of thet o does
not evaluate to a numerical value then thiswill result in arun-time conflict. The following examplesillustrate these possibilities:

| egal _values { "red" "green" "blue" }
legal _values 1 2 4 8 16

| egal _values 1 to CYGARC_MAXI NT

legal values 1.0 to 2.0

It is possible to combine the two syntaxes, for example:

| egal _values 1 2 4 to CYGARC MAXI NT -1024 -20.0 to -10

This indicates three legal values 1, 2 and - 1024, one integer range 4 t o CYGARC_MAXI NT, and one floating point range
-20.0 to -10. 0. Inpractice such list expressions are rarely useful.

Theidentifier t o isnot reserved, so it is possible to have a configuration option with that name (although it violates every naming
convention). Using that option in alist expression may however give unexpected results.

The graphical configuration tool uses the legal_values list expression to determine how best to let users manipulate the option's
value. Different widgets will be appropriate for different lists, so{ "red" "green" "blue" } mightinvolvea pull-down
optionmenu,and 1 to 16 could involve a spinner. The exact way in which legal_values lists get mapped on to GUI widgets
is not defined and is subject to change at any time.

Aswith goal expressions, list expressions can be ambiguous. Consider the following hypothetical example:

| egal _val ues CYGNUM LI BC_RAND SEED - CYGNUM LI BC_RAND_TRACE_LEVEL

This could be parsed in two ways:

| egal _val ues (CYGNUM LI BC_RAND SEED - CYGNUM LI BC_RAND TRACE LEVEL)
| egal _val ues (CYGNUM LI BC_RAND SEED) (- CYGNUM LI BC_RAND TRACE_LEVEL)

Both are legal. The list expression parsing code will always use the largest ordinary expression for each element, so the first
interpretation will be used. In cases likethisit isagood ideato use brackets and avoid possible confusion.

Interfaces

For many configurability requirements, options provide sufficient expressive power. However there are times when a higher level
of abstraction isappropriate. Asan example, suppose that some package relies on the presence of code that implementsthe standard
kernel scheduling interface. However the requirement isno more stringent than this, so the constraint can be satisfied by the mlqueue
scheduler, the bitmap scheduler, or any additiona schedulers that may get implemented in future. A first attempt at expressing
the dependency might be:

requires CYGSEM KERNEL_SCHED M.QUEUE || CYGSEM KERNEL_SCHED Bl TMAP

This constraint will work with the current release, but it islimited. Suppose there is anew release of the kernel which adds another
scheduler such asadeadline scheduler, or suppose that thereisanew third party package which adds such ascheduler. The package
containing the limited constraint would now have to be updated and another release made, with possible knock-on effects.

CDL interfaces provide an abstraction mechanism: constraints can be expressed in terms of an abstract concept, for ex-
ample “scheduler”, rather than specific implementations such as CYGSEM KERNEL SCHED M_QUEUE and CYGSEM KER-
NEL_SCHED BI TMAP. Basically an interface is a calculated configuration option:

cdl _interface CYA NT_KERNEL_SCHEDULER {
di splay "Nunber of schedulers in this configuration”

}

45

The CDL Language

Theindividual schedulers can then implement thisinterface:

cdl _option CYGSEM KERNEL_SCHED M. QUEUE {
di spl ay "Multi-level queue schedul er”
default _value 1
i mpl enent s CYG NT_KERNEL_SCHEDULER

}
cdl _option CYGSEM KERNEL_ SCHED BI TMAP {

di spl ay "Bitmap schedul er"
default_value 0
i mpl enent s CYG NT_KERNEL_SCHEDULER

-

Future schedulers can also implement this interface. The value of an interface, for the purposes of expression evaluation, is the
number of active and enabled options which implement this interface. Packages which rely on the presence of a scheduler can
impose constraints such as:

requi res CYG NT_KERNEL_SCHEDULER

If none of the schedulers are enabled, or if the kernel package is not loaded, then CY@ NT_KERNEL _SCHEDULER will evaluate
to 0. If at least one scheduler is active and enabled then the constraint will be satisfied.

Because interfaces have a calculated value determined by the implementors, the default_value and calculated properties are not
applicable and should not appear in the body of a cdl _i nt er f ace command. Interfaces have the dat a flavor by default,
but the bool and bool dat a flavors may be specified instead. A bool interface is disabled if there are no active and enabled
implementors, otherwiseitisenabled. A bool dat a interfaceisdisabledif there areno active and enabled implementors, otherwise
it is enabled and has a value corresponding to the number of these implementors. Other properties such as requires and compile
can be used as normal.

Some component writers will not want to use interfaces in this way. The reasoning is that their code will only have been tested
with the existing schedulers, so the requires constraint needs to be expressed in terms of those schedulers; it is possible that the
component will still work with a new scheduler, but there are no guarantees. Other component writers may take a more optimistic
view and assume that their code will work with any scheduler until proven otherwise. It is up to individual component writers to
decide which approach is most appropriate in any given case.

One common use for interfaces is to describe the hardware functionality provided by a given target. For example the CDL scripts
for a TCP/IP package might want to know whether or not the target hardware has an ethernet interface. Generally it isnot necessary
for the TCP/IP stack to know exactly which ethernet hardware is present, since there should be a device driver which implements
the appropriate functionality. In CDL terms the device drivers should implement an interface CYGHWR_NET_DRI VERS, and the
CDL scriptsfor the TCP/IP stack can use thisin appropriate expressions.

@ Note
Using the term interface for this concept is sometimes confusing, since the term has various other meanings as well.
In practice, it is often correct. If there is a configuration option that implements a given CDL interface, then usually
this option will enable some code that provides a particular interface at the C or C++ level. For example an ethernet
devicedriver implementsthe CDL interface CYGHWR_NET DRI VERS, and also implementsa set of C functionsthat
can be used by the TCP/IP stack. Similarly CYGSEM _KERNEL _SCHED M_QUEUE implements the CDL interface
CYA NT_KERNEL SCHEDULER and also provides the appropriate scheduling functions.

Updating the ecos.db database

The current implementation of the component framework requires that all packages be present in a single component repository
and listed in that repository's ecos.db database. This is not generally a problem for application devel opers who can consider the
component repository a read-only resource, except when adding or removing packages via the administration tool. However it
means that component writers need to do their devel opment work inside a component repository as well, and update the database

46

The CDL Language

with details of their new package or packages. Future enhancements to the component framework may allow new components to

be developed outside a repository.

Like most files related to the component framework, the ecos.db database is actually a Tcl script. Typical package entries would

look like this:

package CYGPKG LI BC {

alias { "Clibrary" libc clib clibrary }

directory | anguage/c/libc
script libc.cdli
attributes { license_ecosgpl }
description

Thi s package enabl es conpati

bility with the SO C standard - |1SQ | EC

9899: 1990. This allows the user application to use well known standard

Clibrary functions, and in
function main()"
}
package CYGPKG | O PCl {
alias { "PCl configuration li
directory iolpci
script io_pci.cdl

eCos starts a thread to i nvoke the user

brary" io_pci }

attributes { license_ecosgpl hardware_io }

har dwar e
description "

Thi s package contains the PCl configuration library."

}

The package command takes two arguments, a name and a body. The name must be the same asin the cdl _package com-
mand in the package's top-level CDL script. The body can contain the following six commands: al i as, di rectory, scri pt,
attributes, hardwar e anddescri pti on.

alias

directory

scri pt

attributes

har dwar e

Each package should have one or more aliases. Thefirst aliasistypically used when listing
the known packages, because astringlikeC | i br ar y isabit easier to read and understand
than CYGPKG_LI BC. The other aliases are not used for output, but are accepted on input.
For exampl e the ecosconfig command-line tool will accept add | i bc asan option, aswell
asadd CYGPKG LI BC.

This is used to specify the location of the package relative to the root of the component
repository. It should be noted that in the current component framework this location cannot
be changed in subsequent releases of the package: if for somereasonitisdesirableto install
anew release elsewhere in the repository, all the old versions must first be uninstalled; the
database cannot hold two separate locations for one package.

Thescri pt command specifiesthelocation of the package'stop-level CDL script, in other
wordsthe onecontainingthecdl _package definition. If the packagefollowsthedirectory
layout conventions then this script will be in the cdl sub-directory, otherwise it will be
relative to the package's top-level directory. Again once a release has been made this file
should not change in later releases. In practice the top-level script is generally named after
the package itself, so changing its nameis unlikely to be useful.

Theat t ri but es command provides aset of descriptive names or valueswhich represent
attributes of a package. These values are currently used to provide devel opers with ameans
to group together packages with common attributes as an aid to package or target selection,
or to find or identify packages with certain attributes. For example, the most common use
isto identify the licensing under which the source code of a package is distributed to assist
with the adherence of the terms of the licenses.

Packageswhich aretied to specific hardware, for example devicedriversand HAL packages,
should indicate this in both the cdl _package command of the CDL script and in the
database entry.

47

The CDL Language

description This should give a brief description of the package. Typically the text for the description
property inthecdl _package command will be re-used.

@ Note
Most of the information in the ecos.db file could be obtained by a relatively simple utility. This would be passed a
single argument identifying a package'stop-level CDL script. The directory path relative to the component repository
root could be determined from the filename. The name, descri pti on and har dwar e fields could be obtained
fromthescript'scdl _package command. Thedisplay property would supply thefirst alias, additional aliases could
be obtained by extending the syntax of that property or by other means. Something along these lines may be provided
by afuture release of the component framework.

Currently the ecos.db database al so hol ds information about the varioustargets. When porting to anew target it will be necessary to
add information about the target to the database, as well as the details of the new platform HAL package and any related packages.

48

Chapter 4. The Build Process

Some CDL properties describe the consequences of manipulating configuration options. There are two main types of consequences.
Typically enabling a configuration option results in one or more #def i ne' s in a configuration header file, and properties that
affect thisinclude define, define_proc and no_define. Enabling a configuration option can also affect the build process, primarily
determining which files get built and added to the appropriate library. Properties related to the build process include compile and
make. This chapter describes the whole build process, including details such as compiler flags and custom build steps.

Part of the overall design of the eCos component framework is that it can interact with a number of different build systems. The
most obvious of these is GNU make:the component framework can generate one or more makefiles, and the user can then build
the various packages simply by invoking make. However it should also be possible to build eCos by other means: the component
framework can be queried about what is involved in building a given configuration, and this information can then be fed into
the desired build system. Component writers should be aware of this possibility. Most packages will not be affected because the
compile property can be used to provide all the required information, but care has to be taken when writing custom build steps.

Build Tree Generation

It is necessary to create an eCos configuration before anything can be built. With some tools such as the graphical configuration
tool this configuration will be created in memory, and it is not essential to produce an ecos. ecc savefilefirst (although it is still
very desirable to generate such a savefile at some point, to allow the configuration to be re-loaded later on). With other tools the
savefileis generated first, for example using ecosconfi g new, and then abuild treeis generated using ecosconfi g tree.
The savefile contains al the information needed to recreate a configuration.

AneCosbuild actually involvesthree separate trees. The component repository actsasthe sourcetree, and for application devel opers
this should be considered aread-only resource. The build treeiswhere al intermediatefiles, especially object files, are created. The
install tree iswhere the main library | i bt ar get . a, the exported header files, and similar files end up. Following a successful
build it ispossibleto take just theinstall tree and use it for developing an application: none of the files in the component repository
or the build tree are needed for that. The build tree will be needed again only if the user changes the configuration. However the
install tree does not contain copies of al of the documentation for the various packages, instead the documentation is kept only
in the component repository.

By default the build tree, theinstall tree, and theecos. ecc savefileall residein the samedirectory tree. Thisisnot arequirement,
both the install tree and the savefile can be anywhere in the file system.

It is worth noting that the component framework does not separate the usual make and make i nstal | stages. A build aways
populates the install tree, and any make i nst al | step would be redundant.

The ingtall tree will always begin with two directories, i ncl ude for the exported header filesand | i b for the main library
I i bt ar get . a and other files such asthe linker script. In addition there will be a subdirectory i ncl ude/ pkgconf containing
the configuration header files, which are generated or updated at the same time the build tree is created or updated. More details
of header file generation are given below. Additional i ncl ude subdirectories such assys and cyg/ ker nel will be created
during the first build, when each package's exported header files are copied to the install tree. The install tree may also end up with
additional subdirectories during a build, for example as aresult of custom build steps.

The component framework does not define the structure of the build tree, and this may vary between build systems. It can be
assumed that each package in the configuration will have its own directory in the build tree, and that this directory will be used
for storing the package's object files and as the current directory for any build steps for that package. This avoids problems when
custom build steps from different packages generate intermediate files which happen to have the same name.

Some build systems may alow application developers to copy a source file from the component repository to the build tree and
edit the copy. This allows users to experiment with small changes, for example to add a couple of lines of debugging to a package,
without having to modify the master copy in the component repository which could be shared by several projects or several people.
Functionality such as this is transparent to component writers, and it is the responsibility of the build system to make sure that
the right thing happens.

49

The Build Process

@ Note
Thereare someunresolved issuesrelated to the build treeand install tree. Specifically, when updating an existing build
or install tree, what should happen to unexpected files or directories? Suppose the user started with a configuration
that included the math library, and the install tree contains header filesi ncl ude/ mat h. h and i ncl ude/ sys/
i eeef p. h. The user then removed the math library from the configuration and is updating the build tree. It is now
desirable to remove these header files from the install tree, so that if any application code still attempts to use the
math library thiswill fail at compile time rather than at link time. There will also be some object filesin the existing
I'i btarget. a library which are no longer appropriate, and there may be other files in the install tree as a result
of custom build steps. The build tree will still contain a directory for the math library, which no longer serves any
purpose.

However, it is also possible that some of the filesin the build tree or the install tree were placed there by the user, in
which case removing them automatically would be a bad idea.

At present the component framework does not keep track of exactly what should be present in the build and instal
trees, soit cannot readily determine which filesor library members are obsol ete and can safely be removed, and which
ones are unexpected and need to be reported to the user. Thiswill be addressed in afuture release of the system.

Configuration Header File Generation

Configuration options can affect a build in two main ways. First, enabling a configuration option or other CDL entity can result in
various files being built and added to alibrary, thus providing functionality to the application code. However this mechanism can
only operate at arather coarsegrain, at thelevel of entire sourcefiles. Hence the component framework al so generates configuration
header files containing mainly C preprocessor #def i ne directives. Package source code can then #i ncl ude the appropriate
header filesand use #i f , #i f def and #i f ndef directives to adapt accordingly. In this way configuration options can be used
to enable or disable entire functions within a source file or just asingle line, whichever is appropriate.

The configuration header filesend up in thei ncl ude/ pkgconf subdirectory of the install tree. There will be one header file
for the system as awhole, pkgconf/ syst em h, and there will be additional header files for each package, for example pkg-

conf/ ker nel . h. The header files are generated when creating or updating the build and install trees, which needs to happen
after every change to the configuration.

The component framework processes each package in the configuration one at atime. The exact order in which the packages are
processed is not defined, so the order in which #def i ne' s will end up in the global pkgconf / syst em h header may vary.
However for any given configuration the order should remain consistent until packages are added to or removed from the system.
This avoids unnecessary changes to the global header file and hence unnecessary rebuilds of the packages and of application code
because of header file dependency handling.

Within a given package the various components, options and interfaces will be processed in the order in which they were defined
in the corresponding CDL scripts. Typically the data in the configuration headers consists only of a sequence of #def i ne' s so
the order in which these are generated isirrelevant, but some properties such as define_proc can be used to add arbitrary datato a
configuration header and hence there may be dependencies on the order. It should be noted that re-parenting an option below some
other package has no effect on which header file will contain the corresponding #def i ne: the preprocessor directiveswill always
end up in the header file for the package that defines the option, or in the global configuration header.

There are six propertieswhich affect the process of generating header files: define_header, no_define, define_format, define, if_de-
fine, and define_proc.

The define_header property can only occur in the body of acdl _package command and specifies the name of the header file
which should contain the package's configuration data, for example:

cdl _package <sone_package> {

def i ne_header xyzzy.h

}

50

The Build Process

Given such adefine_header property the component framework will use the file pkgconf / xyzzy. h for the package's configu-
ration data. If a package does not have a define_header property then a suitable file name is constructed from the package's name.
Thisinvolves:

1. All characters in the package name up to and including the first underscore are removed. For example CYGPKG_KERNEL is
converted to KERNEL,, and CYGPKG_HAL _ARMis converted to HAL _ARM

2. Any upper case |ettersin the resulting string will be converted to lower case, yielding e.g. ker nel and hal _arm
3. A . h suffix isappended, yielding e.g. ker nel . h andhal _arm h.

Because of the naming restrictions on configuration options, this should result in a valid filename. There is a small possibility
of afile name class, for example CYGPKG_PLUGH and CYGPKG _pl ugh would both end up trying to use the same header file
pkgconf/ pl ugh. h, but the use of lower case |etters for package names violates the naming conventions. It is not legal to use
the define_header property to put the configuration data for several packages in a single header file. The resulting behaviour is
undefined.

Once the name of the package's header file has been determined and the file has been opened, the various components, options and
interfaces in the package will be processed starting with the package itself. The following steps are involved:

1. If the current option or other CDL entity isinactive or disabled, the option isignored for the purposes of header file generation.
#def i ne' s areonly generated for options that are both active and enabled.

2. The next step is to generate a default #def i ne for the current option. If this option has ano_define property then the default
#def i ne issuppressed, and processing continues for define, if_define and define_proc properties.

a. The header file appropriate for the default #def i ne is determined. For acdl _package this will be pkgconf/ sys-
t em h, for any other option this will be the package's own header file. The intention here is that packages and application
code can always determine which packages are in the configuration by #i ncl ude' i ng pkgconf/system h. TheC
preprocessor lacks any facilities for including a header file only if it exists, and taking appropriate action otherwise.

b. For options with the flavorsbool or none, asingle#def i ne will be generated. This takes the form:
#define <option> 1
For example:

#define CYGFUN LI BC Tl ME_POSI X 1

Package source code can check whether or not an option is active and enabled by using the #i f def , #i f ndef or #i f
defi ned(..) directives.

c. For options with the flavors dat a or bool dat a, either one or two #def i ne' s will be generated. The first of these may
be affected by adefine_format property. If this property is not defined then the first #def i ne will take the form:

#def i ne <option> <val ue>
For example:
#define CYGNUM LI BC_ATEXI T_HANDLERS 32
Package source code can examine this value using the #i f directive, or by using the symbol in code such as:
for (i = 0; i < CYGNUM LIBC ATEXI T_HANDLERS; i++) {
:

It must be noted that the #def i ne will be generated only if the corresponding option is both active and enabled. Options
with the dat a flavor are always enabled but may not be active. Code like the above should be written only if it is known

51

The Build Process

that the symbol will always be defined, for example if the corresponding source file will only get built if the containing
component is active and enabled. Otherwise the use of additional #i f def or similar directiveswill be necessary.

d. If thereis adefine format property then this controls how the option's value will appear in the header file. Given a format
string such as %98x and a value 42, the component framework will execute the Tcl command f or mat %®8x 42 and
the result will be used for the #def i ne' s value. It isthe responsibility of the component writer to make sure that this Tcl
command will be valid given the format string and the legal values for the option.

e. In addition asecond #def i ne may or may not be generated. Thiswill take the form:;

#defi ne <option>_<val ue>

For example:

#def i ne CYGNUM LI BC_ATEXI T_HANDLERS 32

The#def i ne will be generated only if it would result in avalid C preprocessor symbol. If the valueisastring such as" /

dev/ ser 0" thenthe#def i ne would be suppressed. This second #def i ne isnot particularly useful for numerical data,
but can be valuable in other circumstances. For example if the legal values for an option XXX_COLORarer ed, gr een and
bl ue then code like the following can be used:

#i fdef XXX_COLOR red

#endi f
#i fdef XXX_COLOR _green

#endi f
#i fdef XXX_COLOR bl ue

#eﬁdif
The expression syntax provided by the C preprocessor is limited to numerical data and cannot perform string comparisons.
By generating two #def i ne' s in thisway it is possible to work around this limitation of the C preprocessor. However

some care has to be taken: if a component writer also defined a configuration option XXX_COLOR_gr een then there will
be confusion. Since such a configuration option violates the naming conventions, the problem is unlikely to arise in practice.

3. For some options it may be useful to generate one or more additional #defi ne' s or, in conjunction with the no_define
property, to define a symbol with aname different from the option's name. This can be achieved with the define property, which
takes the following form:

define [-file=<filenane>] [-format=<format>] <synbol >

For example:

def i ne FOPEN_MAX

Thiswill result in something like:

#def i ne FOPEN_MAX 8
#def i ne FOPEN_MAX_8

The specified symbol must be avalid C preprocessor symbol. Normally the #def i ne will end up in the same header file as
the default one, in other words pkgconf/ syst em h inthecase of acdl _package, or the package's own header file for
any other option. The - f i | e option can be used to change this. At present the only legal valueissyst em h, for example:

define -file=systemh <symnbol >

Thiswill causethe#def i ne to end up in the global configuration header rather than in the package's own header. Use of this
facility should be avoided since it is very rarely necessary to make options globally visible.

The Build Process

define -formt=%%8x <symnbol >

This should only be used for optionswith thedat a or bool dat a flavor, and hasthe same effect asthe define_format property
has on the default #def i ne.

define properties are processed in the same way the default #def i ne. For options with the bool or none flavors a single
#def i ne will begenerated using thevalue 1. For optionswiththedat a or bool dat a flavorseither oneor two#def i ne' s
will be generated.

. After processing all define properties, the component framework will look for any if _define properties. Thesetake the following

form:

if_define [-file=<filenane>] <synbol 1> <synbol 2>

For example:

i f_define CYGSRC KERNEL CYGDBG USE_ASSERTS

The following will be generated in the configuration header file:

#i f def CYGSRC_KERNEL
defi ne CYGDBG USE_ASSERTS
#endi f

Typical kernel source code would begin with the following construct:

#def i ne CYGSRC_KERNEL 1
#i ncl ude <pkgconf/kernel . h>
#i ncl ude <cyg/infral/cyg_ass. h>

Theinfrastructure header filecyg/ i nfra/ cyg_ass. h only checksfor symbols such as CYGDBG_USE ASSERTS, and has
no specia knowledge of the kernel or any other package. The if_define property will only affect code that defines the symbol
CYGSRC_KERNEL, so typically only kernel source code. If the option is enabled then assertion support will be enabled for
the kernel source code only. If the option is inactive or disabled then kernel assertions will be disabled. Assertions in other
packages are not affected. Thustheif define property alows control over assertions, tracing, and similar facilities at the level
of individual packages, or at finer levels such as components or even single source files if desired.

@ Note
Current eCos packages do not yet make use of this facility. Instead there is a single global configuration option
CYGDBG_USE_ASSERTS which is used to enable or disable assertions for al packages. This issue should be
addressed in afuture release of the system.

As with the define property, the if_define property takes an option - f i | e with asingle legal value syst em h. This alows
the output to be redirected to pkgconf / syst em h if and when necessary.

. The final property that is relevant to configuration header file generation is define_proc. This takes a single argument, a Tcl

fragment that can add arbitrary data to the global header pkgconf / syst em h and to the package's own header. When the
define_proc script is invoked two variables will be set up to allow access to these headers: cdl _header will be a channel
to the package's own header file, for example pkgconf/ kernel . h; cdl _syst em header will be a channel to pkg-
conf/syst em h. A typica define proc script will use the Tcl put s command to output data to one of these channels, for
example:

cdl _option <nane> {

}

define_proc {
puts $::cdl _header "#define XXX 1"
}

53

The Build Process

@ Note
In the current implementation the use of define_proc is limited because the Tcl script cannot access any of the
configuration data. Therefore the script is limited to writing constant data to the configuration headers. Thisisa
major limitation which will be addressed in a future release of the component framework.

@ Note
Generating C header fileswith #def i ne' s for the configuration data sufficesfor existing packages written in some
combination of C, C++ and assembler. It can also be used in conjunction with some other languages, for example
by first passing the source code through the C preprocessor and feeding the result into the appropriate compiler. In
future versions of the component framework additional programming languages such as Java may be supported, and
the configuration data may also be written to files in some format other than C preprocessor directives.

@ Note

At present thereis no way for application or package source code to get hold of all the configuration details related to
the current hardware. Instead that information is spread over various different configuration headersfor the HAL and
device driver packages, with some of the information going into pkgconf / syst em h. It is possible that in some
future release of the system there will be another global configuration header file pkgconf / har dwar e. h which
either contains the configuration details for the various hardware-specific packages or which #i ncl ude' s al the
hardware-specific configuration headers. The desirability and feasibility of such a scheme are still to be determined.
Toavoid futureincompatibility problemsasaresult of any such changes, itisrecommended that al hardware packages
(in other packages containing the hardware property) use the define header property to specify explicitly which
configuration header should be generated.

The syst em h Header

Typically configuration header filesare#i ncl ude' d only by the package's source code at build time, or by a package's exported
header files if the interface provided by the package may be affected by a configuration option. There should be no need for
application code to know the details of individual configuration options, instead the configuration should specifically meet the
needs of the application.

There are always exceptions. Application code may want to adapt to configuration options, for example to do different things for
ROM and RAM booting systems, or when it is hecessary to support several different target boards. This is especially true if the
codein question isreally re-usable library code which has not been converted to an eCos package, and hence cannot use any CDL
facilities.

A major problem here is determining which packages are in the configuration; attempting to #i ncl ude a header file such as
pkgconf/ net . hwhenitisnot knownfor certain that that particular packageis part of the configuration will result in compilation
errors. The global header file pkgconf / syst em h serves to provide such information, so application code can use techniques
like the following:

#i ncl ude <pkgconf/system h>
#i f def CYGPKG_NET

include <pkgconf/net.h>
#endi f

Thiswill compile correctly irrespective of the eCos configuration, and subsequent code can use #i f def or similar directives on
CYGPKG_NET or any of the configuration optionsin that package.

In addition to determining whether or not a package is present, the global configuration header file can also be used to find out
the specific version of a package that is being used. This can be useful if a more recent version exports additional functionality. It

The Build Process

may also be necessary to adapt to incompatible changes in the exported interface or to changes in behaviour. For each package the
configuration system will typically #def i ne three symbols, for example for aV1.3.1 release:

#defi ne CYGNUM NET_VERSI ON_MAJOR 1
#defi ne CYGNUM_NET_VERSI ON_M NOR 3
#defi ne CYGNUM NET_VERSI ON_RELEASE 1

There are a number of problems associated with such version #def i ne' s. The first restriction is that the package must follow
the standard naming conventions, so the package name must be of the form xxxPKG_yyy. The three characters immediately
preceding the first underscore must be PKG, and will be replaced with NUMwhen generating the version #def i ne' s. If apackage
does not follow the naming convention then no version #def i ne' s will be generated.

Assuming the package doesfollow the naming conventions, the configuration toolswill dwaysgeneratethreeversion#def i ne' s
for the major, minor, and release numbers. The symbol names are obtained from the package name by replacing PKG with NUM
and appending _ VERSI ON_MAJOR, _ VERSI ON_M NOR and _ VERSI ON_RELEASE. It is assumed that the resulting symbols
will not clash with any configuration option names. Thevaluesfor the#def i ne' s are determined by searching the version string
for sequences of digits, optionally preceded by a minus sign. It is possible that some or all of the numbers are absent in any given
version string, in which case - 1 will be used in the #def i ne. For example, given a version string of V1. 12bet a, the major
version number is 1, the minor number is 12, and the release number is - 1. Given a version string of bet a all three numbers
would besetto- 1.

Thereisspecial casecodefor theversioncur r ent , whichtypically correspondsto adevelopment version obtained viaanonymous
CVS or similar means. The configuration system has special built-in knowledge of this version, and will assume it is more recent
than any specific release number. The global configuration header defines a special symbol CYGNUM _VERSI ON_CURRENT, and
thiswill be used as the major version number when version cur r ent of apackageis used:

#def i ne CYGNUM_VERSI ON_CURRENT Ox7fffff00

#def i ne CYGNUM_| NFRA_VERSI ON_MAJOR CYGNUM_VERSI ON_CURRENT
#def i ne CYGNUM_| NFRA_VERSI ON_M NCR -1
#def i ne CYGNUM_| NFRA_VERSI ON_RELEASE -1

Thelarge number used for CYGNUM_VERSI ON_CURRENT should ensure that major version comparisonswork as expected, while
till allowing for a small amount of arithmetic in case that proves useful.

It should be noted that this implementation of version #def i ne' s will not cope with all version number schemes. However for
many cases it should suffice.

Building eCos

The primary goal of an eCos build isto producethelibrary | i bt ar get . a. A typical eCos build will aso generate a number of
other targets: ext r as. o, startup codevect or s. 0, and alinker script. Some packages may cause additional libraries or targets
to be generated. The basic build process involves a number of different phases with corresponding priorities. There are a number
of predefined priorities:

Priority |Action

0| Export header files

100| Process compile properties and most make_object custom build steps
200| Generate libraries

300| Process make custom build steps

Generation of the ext r as. o file, the startup code and the linker script actually happens via make custom build steps, typically
defined in appropriate HAL packages. The component framework has no special knowledge of these targets.

55

The Build Process

By default custom build steps for a make_object property happen during the same phase as most compilations, but this can be
changed using a- pri ori ty option. Similarly custom build steps for a make property happen at the end of a build, but this can
alsobechangedwitha- pri ori t y option. For exampleapriority of 50 can be used to run a custom build step between the header
file export phase and the main compilation phase. Custom build steps are discussed in more detail below.

Some build systems may run several commands of the same priority in parallel. For examplefileslisted in compile properties may
get compiled in paralel, concurrently with make_object custom build steps with default priorities. Since most of the time for an
eCos build involves processing compile properties, this alows builds to be speeded up on suitable host hardware. All build steps
for agiven phase will complete before the next phase is started.

Updating the Build Tree

Some build systems may involve a phase before the header files get exported, to update the build and install trees automatically
when there has been a change to the configuration savefileecos. ecc. Thisis useful mainly for application developers using the
command linetools: it would allow usersto create the build tree only once, and after any subseguent configuration changesthetree
would be updated automatically by the build system. The facility would be analogous to the - - enabl e- mai nt ai ner - node
option provide by the autoconf and automake programs. At present no eCos build system implements this functionality, but it is
likely to be added in afuture release.

Exporting Public Header Files

The first compulsory phase involves making sure that there is an up to date set of header files in the install tree. Each package
can contain some number of header files defining the exported interface. Applications should only use exported functionality. A
package can also contain some number of private header files which are only of interest to the implementation, and which should
not be visibleto application code. The various packagesthat go into a particular configuration can be spread all over the component
repository. In theory it might be possible to make all the exported header files accessible by having alengthy - | header file search
path, but this would be inconvenient both for building eCos and for building applications. Instead all the relevant header files are
copied to asingle location, thei ncl ude subdirectory of theinstall tree. The process involves the following:

1. Theinstall tree, for example/ usr/ | ocal / ecos/instal |, anditsi ncl ude subdirectory / usr/ | ocal / ecos/ i n-
stal I /i ncl ude will typically be created when the build treeis generated or updated. At the same time configuration header
fileswill be written to the pkgconf subdirectory, for example/ usr /| ocal / ecos/ i ncl ude/ pkgconf , so that the con-
figuration dataisvisibleto all the packages and to application code that may wish to examine some of the configuration options.

2. Each package in the configuration is examined for exported header files. The exact order in which the packages are processed
is not defined, but should not matter.

a. If the package has an include_files property then thislists all the exported header files:
cdl _package <sone_package> {

include_files headerl. h header2.h

}
If no arguments are given then the package does not export any header files.
cdl _package <sone_package> {

include files

}

Thelisted filesmay beinani ncl ude subdirectory within the package's hierarchy, or they may be relative to the package's
toplevel directory. The include_files property is intended mainly for very simple packages. It can also be useful when con-
verting existing code to an eCos package, to avoid rearranging the sources.

b. If thereisnoinclude files property then the component framework will look for ani ncl ude subdirectory in the package,
as per the layout conventions. All files, including those in subdirectories, will be treated as exported header files. For exam-

56

The Build Process

ple, the math library package containsfilesi ncl ude/ mat h. h and i ncl ude/ sys/ i eeef p. h, both of which will be
exported to theinstall tree.

c. Asalast resort, if there is neither an include_files property nor ani ncl ude subdirectory, the component framework will
search the package's toplevel directory and all of its subdirectories for files with one of the following suffixes: . h, . hxx,
.inl or.inc.All suchfileswill beinterpreted as exported header files.

This last resort rule could cause confusion for packages which have no exported header files but which do contain one or
more private header files. For example atypical device driver simply implements an existing interface rather than define a
new one, so it does not need to export a header file. However it may still have one or more private header files. Such packages
should use an include _files property with no arguments.

If the package has one or more exported header files, the next step is to determine where the files should end up. By default
all exported header files will just end up relative to the install tree'si ncl ude subdirectory. For example the math library's
mat h. h header would end up as/ usr/ | ocal / ecos/ i ncl ude/ mat h. h, and the sys/ i eeef p. h header would end
upas/ usr/l ocal / ecos/incl ude/ sys/i eeef p. h. Thisbehaviour is correct for packageslike the C library where the
interfaceis defined by appropriate standards. For other packages this behaviour can lead to file name clashes, and theinclude dir
property should be used to avoid this:

cdl _package CYGPKG _KERNEL {

}

i ncl ude_dir cyg/ kernel

This means that the kernel's exported header file i ncl ude/ kapi . h should be copied to / usr/ | ocal / ecos/ i n-
cl ude/ cyg/ ker nel / kapi . h, whereit isvery unlikely to clash with a header file from some other package.

. For typical application developers there will be little or no need for the installed header files to change after the first build.

Changes will be necessary only if packages are added to or removed from the configuration. For component writers, the build
system should detect changes to the master copy of the header file source code and update the installed copies automatically
during the next build. The build system is expected to perform a header file dependency analysis, so any source files affected
should get rebuilt as well.

. Some build systems may provide additional support for application devel opers who want to make minor changes to a package,

especially for debugging purposes. A header file could be copied from the component repository (which for application devel-
opersis assumed to be aread-only resource) into the build tree and edited there. The build system would detect a more recent
version of such aheader filein the build tree and install it. Care would have to be taken to recover properly if the modified copy
in the build tree is subsequently removed, in order to revert to the original behaviour.

. When updating the install tree'si ncl ude subdirectory, the build tree may aso perform a clean-up operation. Specifically, it

may check for any files which do not correspond to known exported header files and delete them.

@ Note
At present thereis no defined support inthe build system for defining custom build stepsthat generate exported header

files. Any attempt to use the existing custom build step support may fall foul of unexpected header files being deleted
automatically by the build system. This limitation will be addressed in afuture release of the component framework,
and may require changing the priority for exporting header files so that a custom build step can happen first.

Compiling

Once there are up to date copies of al the exported header files in the build tree, the main build can proceed. Most of thisinvolves
compiling source files listed in compile properties in the CDL scripts for the various packages, for example:

cdl _package CYGPKG _ERROR {

di spl ay "Conmon error code support”
conpi l e strerror.cxx

57

The Build Process

}

compile properties may appear in the body of acdl _package, cdl _conponent, cdl _option orcdl _i nterface. If
the option or other CDL entity is active and enabled, the property takes effect. If the option is inactive or disabled the property is
ignored. It is possible for a compile property to list multiple source files, and it is also possible for a given CDL entity to contain
multiple compile properties. The following three examples are equivalent:

cdl _option <sonme_option> {

conpile filel.c file2.c file3.c

}

cdl _option <sonme_option> {

conpile filel.c

conpile file2.c

conpile file3.c
}

cdl _option <sonme_option> {

conpile filel.c file2.c
conpile file3.c
}

Packages that follow the directory layout conventions should have a subdirectory sr ¢, and the component framework will first
look for the specified files there. Failing that it will look for the specified files relative to the package's root directory. For example
if a package contains asourcefilest r err or. cxx then the following two lines are equivalent:

conpil e strerror.cxx
conpil e src/strerror. cxx

In the first case the component framework will find the file immediately in the packages sr ¢ subdirectory. In the second case the
framework will first look for afilesrc/ src/ strerror. cxx, andthenforstr/strerror. cxx relative to the package's
root directory. The result is the same.

The file names may be relative paths, allowing the source code to be split over multiple directories. For example if a package
containsafilesr c/ sync/ mut ex. cxx then the corresponding CDL entry would be:

conpi | e sync/ mut ex. cxx

All the source files relevant to the current configuration will be identified when the build tree is generated or updated, and added
to the appropriate makefile (or its equivalent for other build systems). The actual build will involve arule of the form:

<object file>: <source file>
$(CCO -c $(I NCLUDE_PATH) $(CFLAGS) -0 $@ $<

The component framework has built-in knowledge for processing source files written in C, C++ or assembler. These should have
a.c,.cxx and. Ssuffix respectively. The current implementation has no simple mechanism for extending this with support for
other languages or for alternative suffixes, but this should be addressed in a future release.

The compiler command that will be used issomething likear m eabi - gcc. Thisconsists of acommand prefix, inthiscasear m
eabi , and a specific command such as gcc. The command prefix will depend on the target architecture and is controlled by a
configuration option in the appropriate HAL package. It will have a sensible default value for the current architecture, but users
can modify this option when necessary. The command prefix cannot be changed on a per-package basis, sinceit isusually essential
that all packages are built with a consistent set of tools.

The $(| NCLUDE_PATH) header file search path consists of at least the following:

1. Thei ncl ude directory intheinstall tree. Thisallows sourcefilesto accessthe various header files exported by al the packages
in the configuration, and a so the configuration header files.

2. The current package's root directory. This ensures that al files in the package are accessible at build time.

58

The Build Process

3. Thecurrent package'ssr ¢ subdirectory, if it ispresent. Generally al filesto be compiled are located in or below this directory.
Typically thisis used to access private header files containing implementation details only.

The compiler flags $(CFLAGS) are determined in two steps. First the appropriate HAL package will provide a configuration
option defining the global flags. Typically thisincludes flags that are needed for the target processor, for example - ncpu=ar o,
various flags related to warnings, debugging and optimization, and flagssuch as-fi ni t - pri ori t y which are needed by eCos
itself. Users can modify the global flags option as required. In addition it is possible for existing flags to be removed from and
new flags to be added to the current set on a per-package basis, again by means of user-modifiable configuration options. More
details are given below.

Component writers can assume that the build system will perform full header file dependency analysis, including dependencies on
configuration headers, but the exact means by which this happens is implementation-defined. Typical application developers are
unlikely to modify exported or private header files, but configuration headers are likely to change as the configuration is changed
to better meet the needs of the application. Full header file dependency analysis also makes things easier for the component writers
themselves.

The current directory used during a compilation is an implementation detail of the build system. However it can be assumed that
each package will have its own directory somewhere in the build tree, to prevent file name clashes, that this will be the current
directory, and that intermediate object fileswill end up here.

Generating the Libraries

Once all the compile and make_object properties have been processed and the required object files have been built or rebuilt, these
can be collected together in one or more libraries. The archiver will be the ar command corresponding to the current architecture,
for example powerpc-eabi-ar. By default a of the object fileswill end upinasinglelibrary | i bt ar get . a. This can be changed
on a per-package basis using the library property in the body of the corresponding cdl _package command, for example:

cdl _package <SOVE_PACKAGE> {

library |ibSonmePackage. a
}

However using different libraries for each package should be avoided. It makes things more difficult for application developers
since they now have to link the application code with more libraries, and possibly even change this set of libraries when packages
are added to or removed from the configuration. The use of asinglelibrary | i bt ar get . a avoids any complications.

It is also possible to change the target library for individual files, using a- | i br ary option with the correspondingcompile or
make_object property. For example:

conpile -library=libSonePackage.a hello.c
make_obj ect -library=li bSomePackage. a {

.

Again this should be avoided because it makes application development more difficult. There is one special library which can be
used freely, | i bext ras. a, which is used to generate the ext r as. o file as described below.

The order in which object filesend up in alibrary is not defined. Typically each library will be created directly in theinstall tree,
since thereislittle point in generating afile in the build tree and then immediately copying it to the install tree.

The extras. o file

Package sources files normally get compiled and then added to alibrary, by default | i bt ar get . a, which isthen linked with the
application code. Because of the usual rules for linking with libraries, augmented by the use of link-time garbage collection, this
means that code will only end up in the final executable if there is a direct or indirect reference to it in the application. Usually
thisisthe desired behaviour: if the application does not make any use of say kernel message boxes, directly or indirectly, then that
code should not end up in the final executable taking up valuable memory space.

59

The Build Process

In afew cases it is desirable for package code to end up in the final executable even if there are no direct or indirect references.
For example, device driver functions are often not called directly. Instead the application will access the device viathe string "/
dev/ xyzzy" and cal the device functionsindirectly. Thiswill beimpossible if the functions have been removed at link-time.

Another example involves static C++ objects. It is possible to have a static C++ object, preferably with a suitable constructor
priority, where al of theinteresting work happens as a side effect of running the constructor. For example a package might include
amonitoring thread or a garbage collection thread created from inside such a constructor. Without a reference by the application
to the static object the latter will never get linked in, and the package will not function as expected.

A third example would be copyright messages. A package vendor may want to insist that all products shipped using that package
include a particular message in memory, even though many users of that package will object to such arestriction.

To meet requirements such as these the build system provides support for afile ext r as. o, which aways gets linked with the
application code viathe linker script. Because it is an object file rather than alibrary everything in the file will be linked in. The
extras. o fileis generated at the end of abuild from alibrary | i bext r as. a, so packages can put functions and variablesin
suitable source files and add them to that library explicitly:

conpile -library=libextras.a xyzzy.c
conpi | e xyzzy_support.c

Inthisexamplexyzzy. o will endupinl i bextras. a, and hencein extras. o and in the fina executable. xyzzy sup-
port.owillendupinli bt arget . a asusual, and is subject to linker garbage collection.

Compilers and Flags

2 Caution
Some of the details of compiler selection and compiler flags described below are subject to change in future revi-
sions of the component framework, although every reasonable attempt will be made to avoid breaking backwards
compatibility.

The build system needs to know what compiler to use, what compiler flags should be used for different stages of the build and so
on. Much of thisinformation will vary from target to target, although users should be able to override this when appropriate. There
may also be aneed for some packages to modify the compiler flags. All platform HAL packages should define anumber of options
with well-known names, along the following lines (any existing platform HAL package can be consulted for a complete example):

cdl _conponent CYGBLD_GLOBAL_OPTI ONS {
flavor none
parent CYGPKG_NONE

cdl _option CYGBLD_ GLOBAL_COMVAND PREFI X {
flavor data
defaul t_value { "armeabi" }

)
cdl _option CYGBLD_GLOBAL_CFLAGS {
flavor data
defaul t_value "-Vall -g -2 ..!

}
cdl _option CYGBLD_GLOBAL_LDFLAGS {
flavor data
default_value "-g -nostdlib -W, --gc-sections ..

-
}

The CYGBLD_GLOBAL_OPTI ONS component serves to collect together all global build-related options. It has the flavor none
since disabling all of these options would make it impossible to build anything and hence is not useful. It is parented immediately
below the root of the configuration hierarchy, thus making sure that it is readily accessible in the graphical configuration tool and,
for command line users, intheecos. ecc savefile.

60

The Build Process

@ Note
Currently the parent property lists a parent of CYGPKG_NONE, rather than an empty string. This could be unfortunate
if therewas ever apackagewith that name. Theissuewill be addressed in afuturerel ease of the component framework.

The option CYGBLD_GLOBAL_ COMMAND_PREFI X defines which tools should be used for the current target. Typically thisis
determined by the processor on the target hardware. In some cases a given target board may be able to support several different
processors, in which case the default_value expression could select a different toolchain depending on some other option that is
used to control which particular processor. CYGBLD GLOBAL_COVMAND_PREFI Xismodifiable rather than calculated, so users
can override this when necessary.

Given a command prefix such as ar n+ eabi , all C source files will be compiled with ar m eabi - gcc, all C++ sources will
be built using ar m eabi - g++, and ar m eabi - ar will be used to generate the library. This is in accordance with the usual
naming conventions for GNU cross-compilers and similar tools. For the purposes of custom build steps, tokens such as $(CC)
will be set to ar m eabi - gcc.

The next option, CYGBLD_GLOBAL__ CFLAGS, is used to provide the initial value of $(CFLAGS) . Some compiler flags such as
-\Wal | and - g arelikely to be used on al targets. Other flags such as - ncpu=ar nivt dm will be target-specific. Again thisis
amodifiable option, so the user can switch from say - Q2 to - Cs if desired. The option CYGBLD_GLOBAL _ LDFLAGS servesthe
same purpose for $(LDFLAGS) and linking. It is used primarily when building test cases or possibly for some custom build steps,
since building eCos itself generally involves building one or more libraries rather than executables.

Some packages may wish to add certain flags to the global set, or possibly remove some flags. This can be achieved by having
appropriately named optionsin the package, for example:

cdl _conmponent CYGPKG_KERNEL_OPTI ONS {
di spl ay "Kernel build options"
flavor none

cdl _option CYGPKG KERNEL_CFLAGS_ADD {
di spl ay "Additional conpiler flags"
flavor data
default_value { "" }

}
cdl _option CYGPKG KERNEL_CFLAGS REMOVE {

di spl ay "Suppressed conpiler flags"
flavor data
default_value { "" }

}
cdl _option CYGPKG KERNEL_LDFLAGS_ADD {

di spl ay "Additional |inker flags"
flavor data
default_value { "" }

}
cdl _option CYGPKG KERNEL_LDFLAGS_REMOVE {

di spl ay "Suppressed |inker flags"
flavor data
default_value { "" }

-
}

In this example the kernel does not modify the global compiler flags by default, but it is possible for the users to modify the options
if desired. The value of $(CFLAGS) that is used for the compilations and custom build steps in a given package is determined
asfollows:

1. Start with the global settings from CYGBLD_GLOBAL_CFLAGS, for example-g - Q2.

61

The Build Process

2. Remove any flags specified in the per-package CFLAGS REMOVE option, if any. For example if - O2 should be removed for
this package then $(CFLAGS) would now have avalue of just - g.

3. Then concatenate the flags specified by the per-package CFLAGS _ADD option, if any. For exampleif - Os should be added for
the current package then the final value of $(CFLAGS) will be-g - Cs.

$(LDFLAGS) isdetermined in much the same way.

N

K

Note

The way compiler flags are handled at present has numerous limitations that need to be addressed in afuture rel ease,
although it should suffice for nearly all cases. For the time being custom build steps and in particular the make_object
property can be used to work around the limitations.

Amongst the issues, there is a specific problem with package encapsulation. For example the math library imposes
some stringent requirements on the compiler in order to guarantee exact | EEE behavior, and may need special flagson
a per-architecture basis. One way of handling thisis to have CYGPKG_LI BM_CFLAGS_ADD and CYGPKG_LI B-
M _CFLAGS REMOVE default_value expressions which depend on the target architecture, but such expressions may
have to updated for each new architecture. An alternative approach would allow the architectural HAL package to
modify the default_value expressions for the math library, but this breaks encapsulation. A third approach would
allow some architectural HAL packages to define one or more special options with well-known names, and the math
library could check if these options were defined and adjust the default values appropriately. Other packages with
floating point requirements could do the same. This approach also has scalability issues, in particular how many such
categories of options would be needed? It is not yet clear how best to resolve such issues.

Note

When generating a build tree it would be desirable for the component framework to output details of the tools and
compiler flags in aformat that can be re-used for application builds, for example a makefile fragment. This would
make it easier for application developers to use the same set of flags as were used for building eCos itself, thus
avoiding some potential problems with incompatible compiler flags.

Custom Build Steps

A

Caution

» Some of the details of custom build steps as described below are subject to change in future revisions of the
component framework, although every reasonabl e attempt will be madeto avoid breaking backwards compatibility.

» Thefirst linein the make and make_object blocks introduced below defines the make target and its dependencies
with the remaining lines specifying the commands. These commands will always be tab-indented in the resulting
makefileand asaresult all GNUmake commands, suchasi f eq(. . .), will beillegal asthese cannot beindented.
It is possible to work around this CDL deficiency in some instances using make's shell syntax support. For an
example, see the eCos custom build step used to create the mk_romfs command within the CYGPKG_FS_ROM
package located in SECOS_REPOSI TORY/ packages/ f s/ roni <ver si on>/ cdl / ronfs. cdl .

For most packages simply listing one or more source files in a compile property is sufficient. These files will get built using the
appropriate compiler and compiler flags and added to alibrary, which then getslinked with application code. A packagethat can be
built in thisway is likely to be more portable to different targets and build environments, since it avoids build-time dependencies.
However some packages have special needs, and the component framework supports custom build steps to allow for these needs.
There are two properties related to this, make and make_object, and both take the following form:

make {

<target _filepath> : <dependency_fil epath> ..
<conmand>

62

The Build Process

}

Although this may look like makefile syntax, and although some build environments will indeed involve generating makefiles and
running make, this is not guaranteed. It is possible for the component framework to be integrated with some other build system,
and custom build steps should be written with that possibility in mind. Each custom build step involves a target, some number of
dependency files, and some number of commands. If the target is not up to date with respect to one or more of the dependencies
then the commands need to be executed.

a. Only one target can be specified. For a make object property this target must be an object file. For a make property it can
be any file. In both cases it must refer to a physical file, the use of phony targets is not supported. The target should not be
an absolute path name. If the generated file needs to end up in the install tree then this can be achieved using a <PREFI X>
token, for example:

make {
<PREFI X>/| i b/ myt ar get

When the build treeis generated and the custom build step isadded to the makefile (or whatever build systemisused) <PREFI X>
will be replaced with the absolute path to the install tree.

b. All the dependencies must also refer to physical files, not to phony targets. These files may be in the source tree. The <PACK-
AGE> token can be used to indicate this: when the build tree is generated this token will be replaced with the absolute path to
the package's root directory in the component repository, for example:

make_obj ect {
xyzzy.o : <PACKAGE>/src/xyzzy.c

@ Note
The token <PACKAGE> can only be used in the dependancies list and must not be used in a target name as it
refers to the package directory in the source repository.

If the component repository was installed in / usr /| ocal / ecos and this custom build step existed in version 1_5 of the
kernel, <PACKAGE> would be replaced with / usr /| ocal / ecos/ packages/ kernel /vl 5.

Alternatively the dependencies may refer to files that are generated during the build. These may be object files resulting from
compile properties or other make_object properties, or they may be other files resulting from amake property, for example:
conpi | e plugh.c

make_obj ect {
xyzzy.o : plugh.o

¢. No other token or makefile variables may be used in the target or dependency file names. Also conditionals such asi f neq
and similar makefile functionality must not be used.

d. Similarly the list of commands must not use any makefile conditionals or similar functionality. A number of tokens can be
used to provide access to target-specific or environmental data. Note that these tokens look like makefile variables, unlike the
<PREFI X> and <PACKAGE> tokens mentioned earlier:

Token Purpose Examplevalue

$(AR the GNU archiver m ps-tx39-el f-ar
$(CO the GNU compiler sh-el f-gcc

$(CFLAGS) compiler flags -2 -\vall

63

The Build Process

Token Purpose Examplevalue
$(COMMAND_PREFI X) thetriplet prefix mMm210300- el f -
$(1 NCLUDE_PATH) header file search path -1. -lsrc/msc

$(LDFLAGS) linker flags -nostdlib -W,-static
$(OBICOPY) the objcopy utility ar m eabi - obj copy
$(PREFI X) location of theinstall tree /hone/fred/ ecos-install

$(REPCSI TORY)

location of the component repository

/ hone/ fred/ ecos/ packages

In addition commandsin acustom build step may refer to the target and the dependencies using $@$<, $” and $*, all of which
behave as per GNU make syntax. The commands will execute in a suitable directory in the build tree.

e. Thecurrent directory used during acustom build step isan implementation detail of the build system. However it can be assumed
that each package will have its own directory somewhere in the build tree, to prevent file name clashes, and that thiswill be the
current directory. In addition any object files generated as a result of compile properties will be located here as well, which is
useful for custom build steps that depend on a. o file previously generated.

Any temporary files created by a custom build step should be generated in the build tree (in or under the current directory). Such
files should be given a. t np file extension to ensure that they are deleted during armake cl ean or equivaent operation.

If a package contains multiple custom build steps with the same priority, it is possible that these build steps will be run concur-
rently. Therefore these custom build steps must not accidentally use the same file names for intermediate files.

f. Care hasto be taken to make sure that the commandsin a custom build step will run on all host platforms, including Windows
NT aswell as Linux and other Unix systems. For example, al file paths should use forward slashes as the directory separator.
It can be assumed that Windows userswill have afull set of CygWin toolsinstalled and available on the path. The GNU coding
standards provide some useful guidelines for writing portable build rules.

0. A custom build step must not make any assumptions concerning the version of another package. This enforces package encap-
sulation, preventing one package from accessing the internals of another.

h. No assumptions should be made about the target platform, unless the package isinherently specific to that platform. Even then
it is better to use the various tokens whenever possible, rather than hard-coding in details such as the compiler. For example,
given acustom build step such as:

arm eabi -gcc -c¢ -ncpu=arnvdi -0 $@ $<

Even if thisbuild step will only beinvoked on ARM targets, it could cause problems. For example the toolchain may have been
installed using a prefix other than ar m eabi . Also, if the user changes the compiler flags then this would not be reflected in
the build step. The correct way to write this rule would be:

$(CO -c $(CFLAGS) -0 $@ $<

Some commands such as the compiler, the archiver, and objcopy are required sufficiently often to warrant their own tokens, for
example $(CC) and $(OBJ COPY) . Other target-specific commands are needed only rarely and the $(COMMAND PREFI X)
token can be used to construct the appropriate command name, for example:

$(COMMAND_PREFI X) si ze $< > $@

i. Custom build steps should not be used to build host-side executables, even if those executables are needed to build parts of
the target side code. Support for building host-side executables will be added in afuture version of the component framework,
although it will not necessarily involve these custom build steps.

By default custom build steps defined in a make_object property have a priority of 100, which means that they will be executed
in the same phase as compilations resulting from a compile property. It is possible to change the priority using a property option,
for example:

http://www.gnu.org/prep/standards.html
http://www.gnu.org/prep/standards.html

The Build Process

make_object -priority 50 {
}

Specifying apriority smaller than a100 meansthat the custom build step happens before the normal compilations. Priorities between
100 and 200 happen after norma compilations but before the libraries are archived together. make_object properties should not
specify apriority of 200 or later.

Custom build steps defined in a make property have adefault priority of 300, and so they will happen after the libraries have been
built. Again this can be changed using a- pri ori t y property option.

Startup Code

Linking an application reguires the application code, a linker script, the eCos library or libraries, the ext r as. o file, and some
startup code. Depending on the target hardware and how the application gets booted, this startup code may do little more than
branching to mai n() , or it may have to perform a considerable amount of hardware initialization. The startup code generally lives
inafilevect or s. o whichiscreated by a custom build step in aHAL package. Asfar as application developers are concered the
existence of thisfileislargely transparent, since the linker script ensures that the file is part of the final executable.

This startup code is not generally of interest to component writers, only to HAL devel opers who are referred to one of the existing
HAL packages for specific details. Other packages are not expected to modify the startup in any way. If a package needs some
work performed early on during system initialization, before the application's main entry point gets invoked, this can be achieved
using a static object with a suitable constructor priority.

@ Note
It is possible that the ext r as. o support, in conjunction with appropriate linker script directives, could be used to
eliminate the need for a special startup file. The details are not yet clear.

The Linker Script

A Caution

This section is not finished, and the details are subject to change in a future release. Arguably linker script issues
should be documented in the HAL documentation rather than in this guide.

Generating the linker script is the responsibility of the various HAL packages that are applicable to a given target. Developers of
components other than HAL packages need not be concerned about what is involved. Developers of new HAL packages should
use an existing HAL as atemplate.

@ Note
It may be desirable for some packages to have some control over the linker script, for example to add extra alignment
details for a particular section. This can be risky because it can result in subtle portability problems, and the current
component framework has no support for any such operations. The issue may be addressed in a future release.

Building Test Cases

A Caution

The support in the current implementation of the component framework for building and running test casesislimited,
and should be enhanced considerably in afuture version. Compatibility with the existing mechani sms described bel ow
will be maintained if possible, but this cannot be guaranteed.

65

The Build Process

Whenever possible packages should be shipped with one or more test cases. This allows users to check that all packages function
correctly in their particular configuration and on their target, which may be custom hardware unavailable to the package devel oper.
The component framework needsto provide away of building such test cases. For example, if amakefile system is used then there
couldbeanmake t est s target to build thetest cases, or possibly anake check target to build and run thetest cases and process
all the results. Unfortunately there are various complications.

Not every test case will be applicable to every configuration. For example if the user has disabled the C library's CYGP-
KG_LI BC_STDI Ocomponent then thereis no point in building or running any of the test cases for that component. Thisimplies
that test cases need to be associated with configuration options somehow. It is possible for the test caseto use one or more#i f def
statements to check whether or not it is applicablein the current configuration, and compile to anull program when not applicable.
Thisisinefficient because the test case will still get built and possibly run, even though it will not provide any useful information.

Many packages involve direct interaction with hardware, for example a serial line or an ethernet interface. In such casesit is only
worthwhile building and running the test if there is suitable software running at the other end of the serial line or listening on the
same ethernet segment, and that software would typically have to run on the host. Of course the seria line in question may be
hooked up to a different piece of hardware which the application needs to talk to, so disconnecting it and then hooking it up to the
host for running some tests may be undesirable. The decision as to whether or not to build the test depends not just on the eCos
configuration but also on the hardware setup and the availability of suitable host software.

There are different kinds of tests, and it is not always desirable to run all of them. For example a package may contain a number of
stress tests intended to run for long periods of time, possibly days or longer. Such tests should certainly be distinguished somehow
from ordinary test cases so that users will not run them accidentally and wonder how long they should wait for a pass message
before giving up. Stress tests may also have dependencies on the hardware configuration and on host software, for example a
network stress test may require lots of ethernet packets.

In the current implementation of the component framework these issues are not yet addressed. Instead there is only very lim-
ited support for building test cases. Any package can define a calculated configuration option of the form CYGPKG_<pack-
age- name>_TESTS, whose value is a list of test cases. The calculated property can involve an expression so it is possible to
adapt to asmall number of configuration options, but this quickly becomes unwieldy. A typical example would be:

cdl _opti on CYGPKG U TRON_TESTS {
di splay "ul TRON tests"
flavor data
no_defi ne
calculated { "tests/testl tests/test2 tests/test3 \
tests/test4 tests/test5 tests/test6 tests/test7 \
tests/test8 tests/test9 tests/testcxx tests/testcx2 \
tests/testcx3 tests/testcx4 tests/testcx5 \
tests/testcx6 tests/testcx7 tests/testcx8 \
tests/testcx9 tests/testintr" }
description
This option specifies the set of tests for the ul TRON conpatibility |ayer."

}

Thisimpliesthat thereisafilet est s/test 1. c ort est s/t est 1. cxx in the package's directory. The commands that will
be used to build the test case will take the form:

$(CO) -c $(I NCLUDE_PATH) $(CFLAGS) -0 <build path>/testl.0 \
<source path>/tests/testl.c
$(CC) $(LDFLAGS) -0 <install path>/tests/testl <build_path>/testl.o0

Thevariables$(CC) and so on are determined inthe sameway asfor custom build steps. Thevarious pathsand the current directory
will depend on the exact build system being used, and are subject to change. As usual the sources in the component repository are
treated asaread-only resources, intermediatefileslivein the build tree, and the desired executables should end up intheinstall tree.

Each test source file must be self-contained. It is not possible at present to build alittle per-package library that can be used by the
test cases, or to link together several object filesto produce asingle test executable. In some casesit may be possibleto#i ncl ude
source code from a shared file in order to avoid unnecessary code replication. There is no support for manipulating compiler or
linker flags for individual test cases: the flags that will be used for all files are $(CFLAGS) and $(LDFLAGS) , as per custom

66

The Build Process

build steps. Note that it is possible for a package to define options of the form CYGPKG_<PACKAGE- NAVE>_LDFLAGS _ADD
and CYGPKG_<PACKAGE- NAME>_LDFLAGS REMOVE. These will affect test cases, but in the absence of custom build steps
they will have no other effect on the build.

67

Chapter 5. CDL Language Specification

This chapter contains reference information for the main CDL commands cdl _opti on, cdl _conponent, cdl _package
andcdl _i nt erf ace, followed by the various properties such as active_if and compile in alphabetical order.

68

CDL Language Specification

Name

Command cdl _opt i on — Define asingle configuration option

Synopsis
cdl _option <nane> {

:

Description

Theoptionisthe basic unit of configurability. Generally each option correspondsto asingle user choice. Typically thereisacertain
amount of information associated with an option to assist the user in manipulating that option, for example a textual description.
There will aso be some limits on the possible values that the user can choose, so an option may be a simple yes-or-no choice or
it may be something more complicated such as an array size or a device name. Options may have associated constraints, so if that
option is enabled then certain conditions have to satisfied el sewhere in the configuration. Options usually have direct conseguences
such as preprocessor #def i ne symbolsin aconfiguration header file.

cdl _opti on isimplemented as a Tcl command that takes two arguments, a name and a body. The name must be a valid C
preprocessor identifier: asequence of upper or lower caseletters, digitsor underscores, starting with anon-digit character; identifiers
beginning with an underscore should normally be avoided because they may clash with system packages or with identifiersreserved
for use by the compiler. Within a single configuration, names must be unique. If a configuration contained two packages which
defined the same entity CYA MP_SOME_OPTI ON, any referencesto that entity in arequires property or any other expression would
be ambiguous. It is possible for a given name to be used by two different packages if those packages should never be loaded into a
single configuration. For example, architectural HAL packages are allowed to re-use names because a single configuration cannot
target two different architectures. For arecommended naming convention see the section called “Package Contents and Layout”.

The second argumenttocdl _opt i on isabody of properties, typically surrounded by braces so that the Tcl interpreter treatsit as
asingleargument. Thisbody will be processed by arecursiveinvocation of the Tcl interpreter, extended with additional commands
for the various properties that are allowed insideacdl _opt i on. Thevalid properties are:

active if Allow additional control over the active state of this option.

calculated The option's value is not directly user-modifiable, it is calculated using a suitable CDL expression.
compile List the source files that should be built if this option is active and enabled.

default_vaue Provide a default value for this option using a CDL expression.

define Specify additional #def i ne symbolsthat should go into the owning package's configuration header file.
define_format Control how the option's value will appear in the configuration header file.

define_proc Use afragment of Tcl code to output additional data to configuration header files.

description Provide atextual description for this option.

display Provide a short string describing this option.

doc The location of on-line documentation for this option.

flavor Specify the nature of this option.

if _define Output a common preprocessor construct to a configuration header file.

implements Enabling this option provides one instance of a more general interface.

69

CDL Language Specification

legal values Impose constraints on the possible values for this option.

make An additiona custom build step associated with this option, resulting in a target that should not go
directly into alibrary.

make_object An additional custom build step associated with this option, resulting in an object file that should go
into alibrary.

no_define Suppress the normal generation of a preprocessor #def i ne symbol in a configuration header file.

parent Control the location of this option in the configuration hierarchy.

requires List constraints that the configuration should satisfy if this option is active and enabled.

Example

cdl _option CYGDBG | NFRA_DEBUG PRECONDI Tl ONS {

di spl ay "Precondi ti ons"

default_value 1
description
This option allows individual control of preconditions.
A precondition is one type of assert, which it is
useful to control separately from nore general asserts.
The function is CYG PRECONDI TI ON(condi tion, nsg)."
}

See Also

Command cdl _conponent , command cdl _package, command cdl _i nt erf ace.

70

CDL Language Specification

Name

Command cdl _conponent — Define acomponent, a collection of configuration options

Synopsis
cdl _conmponent <nane> {

:

Description

A component is a configuration option that can contain additional options and sub-components. The body of acdl _conponent
can contain the same properties as that of a cdl _opt i on. There is an additional property, script which allows configuration
data to be split into multiple files. It is also possible for a component body to include cdl _conponent, cdl _opti on and
cdl _i nterface entitiesthat should go below this component in the configuration hierarchy.

cdl _conponent isimplemented as a Tcl command that takes two arguments, a name and a body. The name must be avalid C
preprocessor identifier: asequence of upper or lower caseletters, digitsor underscores, starting with anon-digit character; identifiers
beginning with an underscore should normally be avoided because they may clash with system packages or with identifiersreserved
for use by the compiler. Within a single configuration, names must be unique. If a configuration contained two packages which
defined the same entity CYA MP_SOVE_OPTI ON, any references to that entity in a requires property or any other expression
would be ambiguous. It is possible for a given name to be used by two different packages if those packages should never be
loaded into a single configuration. For example, architectural HAL packages are allowed to re-use certain names because asingle
configuration cannot target two different architectures. For a recommended naming convention see the section called “Package
Contents and Layout”.

The second argument tocdl _conponent isabody of properties and other commands, typically surrounded by braces so that the
Tcl interpreter treatsit as a single argument. This body will be processed by arecursive invocation of the Tcl interpreter, extended
with additional commands for the various properties that are allowed insideacdl _conponent . The valid commands are:

active if Allow additional control over the active state of this component.

calculated The component's value is not directly user-modifiable, it is calculated using a suitable CDL expression.

cdl _conponent Define a sub-component.

cdl _interface Define an interface which should appear immediately below this component in the configuration hier-
archy.

cdl _option Define a configuration option which should appear immediately below this component in the configu-

ration hierarchy.

compile List the source files that should be built if this component is active and enabled.

default_value Provide a default value for this component using a CDL expression.

define Specify additional #def i ne symbolsthat should go into the owning package's configuration header file.
define_format Control how the component's value will appear in the configuration header file.

define_proc Use afragment of Tcl code to output additional data to configuration header files.

description Provide atextual description for this component.

display Provide a short string describing this component.

71

CDL Language Specification

doc

flavor

if define
implements
legal values

make

make_object

no_define
parent
requires

script

Example

The location of on-line documentation for this component.

Specify the nature of this component.

Output a common preprocessor construct to a configuration header file.
Enabling this component provides one instance of a more general interface.
Impose constraints on the possible values for this component.

An additional custom build step associated with this component, resulting in atarget that should not go
directly into alibrary.

An additional custom build step associated with this component, resulting in an object file that should
gointo alibrary.

Suppress the normal generation of a preprocessor #def i ne symbol in a configuration header file.
Control the location of this component in the configuration hierarchy.
List constraints that the configuration should satisfy if this component is active and enabled.

Include additional configuration information from another CDL script

cdl _conponent CYGDBG _USE_ASSERTS {

di spl ay

"Use asserts"
default_value 1
description

If this conponent is enabled, assertions in the code are
tested at run-tine. Assert functions (CYG ASSERT()) are
defined in "include/cyg/infra/cyg_ass.h' within the "install
tree. If the conponent is disabled, these result in no

addi ti ona
conditions."

scri pt

}

See Also

obj ect code and no checking of the asserted

assert.cd

Command cdl _opti on,command cdl _package, commandcdl i nterface.

72

CDL Language Specification

Name

Command cdl _package — Define a package, a component that can be distributed
Synopsis
cdl _package <nane> {

}

Description

A package is a unit of distribution. It is also a configuration option in that users can choose whether or not a particular package
is loaded into the configuration, and which version of that package should be loaded. It is also a component in that it can contain
additional components and optionsin a hierarchy.

The top-level CDL script for a package should begin with acdl _package command. This can contain most of the properties
that can be used in acdl _opt i on command, and a number of additional ones which apply to a package as a whole. It is aso
possibletoinclude cdl _conponent, cdl _i nt erface andcdl _opt i on commandsin the body of a package. However all
configuration entities that occur at the top level of the script containing the cdl _package command are automatically placed
below that package in the configuration hierarchy, so putting them inside the body has no effect.

The following properties cannot be used in the body of acdl _package command:

flavor Packages always have the flavor bool dat a.

default_value The value of a package is its version number. This is specified at the time the package is loaded into
the configuration, and cannot be calculated afterwards. Typically the most recent version of the package
will be loaded.

legal_values The legal values list for a given package is determined by which versions of that package are installed

in the component repository, and cannot be further constrained in the CDL scripts.

calculated The value of a package is always selected at thetime that it is loaded into the configuration, and cannot
be re-calcul ated afterwards.

script This would be redundant since the CDL script containing the cdl _package command acts as that
package's script.

cdl _package isimplemented as a Tcl command that takes two arguments, a name and a body. The name must be a valid C
preprocessor identifier: asequence of upper or lower caseletters, digitsor underscores, starting with anon-digit character; identifiers
beginning with an underscore should normally be avoided because they may clash with system packages or with identifiersreserved
for use by the compiler. Packages should always have unique names within a given component repository. For a recommended
naming convention see the section called “Package Contents and Layout”.

The second argument to cdl _package isabody of properties and other commands, typically surrounded by braces so that the
Tcl interpreter treatsit as a single argument. This body will be processed by arecursive invocation of the Tcl interpreter, extended
with additional commands for the various properties that are allowed insideacdl _package. The valid commands are:

active if Allow additional control over the active state of this package.

cdl _conponent Defineacomponent which should appear immediately bel ow this packagein the configuration hierarchy.
cdl _interface Define an interface which should appear immediately bel ow this package in the configuration hierarchy.
cdl _option Define an option which should appear immediately below this package in the configuration hierarchy.

73

CDL Language Specification

compile
define

define_format

define_header
define_proc
description
display

doc
hardware
if_define
implements
include dir
include files
library

make

make_object

no_define

parent

requires

Example

List the source files that should be built for this package.
Specify additional #def i ne symbolsthat should go into the package's configuration header file.

Control how the package's value will appear in the global configuration header file pkgconf/ sys-
temh

Specify the configuration header file that will be generated for this package.

Use afragment of Tcl code to output additional data to configuration header files.
Provide atextual description for this component.

Provide a short string describing this component.

The location of on-line documentation for this component.

This package is tied to specific hardware.

Output a common preprocessor construct to a configuration header file.

Enabling this component provides one instance of amore general interface.

Specify the desired location of this package's exported header filesin the install tree.
List the header files that are exported by this package.

Specify which library should contain the object files generated by building this package.

An additional custom build step associated with this component, resulting in atarget that should not go
directly into alibrary.

An additional custom build step associated with this component, resulting in an object file that should
gointo alibrary.

Suppress the normal generation of the package's#def i ne inthe global configuration header filepkg-
conf/system h.

Control the location of this package in the configuration hierarchy.

List constraints that the configuration should satisfy if this packageis active.

cdl _package CYGPKG. | NFRA {

di spl ay
include_dir
description

"Infrastructure"
cyg/infra

Common types and useful nacros.
Traci ng and assertion facilities.
Package startup options."

conpi l e startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \
dummyxxmai n. cxx null.cxx sinple.cxx fancy.cxx buffer.cxx \
di ag. cxx tcdi ag. cxx mencpy.c nenset.c del ete. cxx

}

See Also

Command cdl _opti on, command cdl _conponent,commandcdl i nterface.

74

CDL Language Specification

Name

Command cdl _i nt er f ace — Define an interface, functionality that can be provided by anumber of different implementations.

Synopsis
cdl _interface <nanme> {

:

Description

An interface is a special type of calculated configuration option. It provides an abstraction mechanism that is often useful in
CDL expressions. As an example, suppose that some package relies on the presence of code that implements the standard kernel
scheduling interface. However the requirement is no more stringent than this, so the constraint can be satisfied by the miqueue
scheduler, the bitmap scheduler, or any additional schedulers that may get implemented in future. A first attempt at expressing
the dependency might be:

requi res CYGSEM KERNEL_SCHED M.QUEUE || CYGSEM KERNEL_SCHED Bl TMAP

This constraint is limited, it may need to be changed if a new scheduler were to be added to the system. Interfaces provide a way
of expressing more general relationships:

requi res CYG NT_KERNEL_SCHEDULER

The interface CYG NT_KERNEL_SCHEDULER is implemented by both the miqueue and bitmap schedulers, and may be imple-
mented by future schedulers as well. The value of an interface is the number of implementors that are active and enabled, soin a
typical configuration only one scheduler will be in use and the value of the interface will be 1. If all schedulers are disabled then
the interface will have avalue 0 and the requires constraint will not be satisfied.

Some component writers may prefer to use thefirst requires constraint on the grounds that the code will only have been tested with
the mlqueue and bitmap schedulers and cannot be guaranteed to work with any new schedulers. Other component writers may take
amore optimistic view and assume that their code will work with any scheduler until proven otherwise.

Interfaces must be defined in CDL scripts, just like options, components and packages. This involves the command cdl _i n-

t er f ace which takes two arguments, a name and a body. The name must be a valid C preprocessor identifier: a sequence of
upper or lower case letters, digits or underscores, starting with a non-digit character; identifiers beginning with an underscore
should normally be avoided because they may clash with system packages or with identifiers reserved for use by the compiler.
Within a single configuration, names must be unique. If a configuration contained two packages which defined the same entity
Cyd MP_SQVE_OPTI QN, any references to that entity in a requires property or any other expression would be ambiguous. It is
possiblefor agiven nameto be used by two different packagesif those packages should never be loaded into asingle configuration.
For example, architectural HAL packages are allowed to re-use names because a single configuration cannot target two different
architectures. For a recommended naming convention see the section called “ Package Contents and Layout”.

The second argumenttocdl _i nt er f ace isabody of properties, typically surrounded by braces so that the Tcl interpreter treats
it as a single argument. This body will be processed by a recursive invocation of the Tcl interpreter, extended with additional
commands for the various properties that are allowed inside acdl _i nt er f ace. The valid properties are a subset of those for
acdl _option.

active if Allow additional control over the active state of thisinterface.

compile List the source files that should be built if thisinterfaceis active.

define Specify additional #def i ne symbolsthat should go into the owning package's configuration header file.
define_format Control how the interface's value will appear in the configuration header file.

75

CDL Language Specification

define_proc Use afragment of Tcl code to output additional data to configuration header files.

description Provide atextual description for thisinterface.

display Provide a short string describing thisinterface.

doc The location of on-line documentation for thisinterface.

flavor Interfaces have the dat a flavor by default, but they can also be given the bool or bool dat a flavor
when necessary. A bool interfaceisdisabled if there are no active and enabled implementors, otherwise
it isenabled. A bool dat a interface is aso disabled if there are no active and enabled implementors,
otherwise it is enabled and the datais a number corresponding to the number of these implementors.

if_define Output a common preprocessor construct to a configuration header file.

implements If thisinterfaceis active it provides one instance of a more general interface.

legal values Interfaces always have a small numerical value. The legal_values can be used to apply additional con-
straints such as an upper limit.

make An additiona custom build step associated with this option, resulting in a target that should not go
directly into alibrary.

make_object An additional custom build step associated with this option, resulting in an object file that should go
into alibrary.

no_define Suppress the normal generation of a preprocessor #def i ne symbol in a configuration header file.

parent Control the location of this option in the configuration hierarchy.

requires List constraints that the configuration should satisfy if this option is active and enabl ed.

A number of properties are not applicable to interfaces:

calculated Interfaces are always calculated, based on the number of active and enabled entities that
implement the interface.
default_value Interface values are calculated so a default_value property would be meaningless.

Interfaces are not containers, so they cannot hold other entities such as options or components.

A commonly used constraint on interface values takes the form:

requires CYA NT_KERNEL_SCHEDULER == 1

Thisconstraint specifiesthat there can be only one scheduler in the system. |n some circumstancesit is possiblefor the configuration
tools to detect this pattern and act accordingly, so for example enabling the bitmap scheduler would automatically disable the
mlqueue scheduler.

Example

cdl _interface CYA NT_KERNEL_SCHEDULER {
di splay "Nunber of schedulers in this configuration”
requires 1 == CYQ NT_KERNEL_SCHEDULER

}

See Also

Property implements, command cdl _opt i on. command cdl _conponent , command cdl _package.

76

CDL Language Specification

Name

Property active if — Allow additional control over the active state of an option or other CDL entity.

Synopsis

cdl _option <nanme> {
active_if <condition>

N

Description

Configuration options or other entities may be either active or inactive. Typically this is controlled by the option's location in
the overall hierarchy. Consider the option CYGDBG | NFRA DEBUG PRECONDI Tl ONS, which exists below the component
CYGDBG_USE_ASSERT. If the whole component is disabled then the optionsit contains are inactive: thereis no point in enabling
preconditions unless there is generic assertion support; any requires constraints associated with preconditions are irrelevant; any
compile property or other build-related property isignored.

In some casesthe hierarchy doesnot provide sufficient control over whether or not aparticular option should be active. For example,
the math library could have support for floating point exceptions which is only worthwhile if the hardware implements appropriate
functionality, as specified by the architectural HAL. The relevant math library configuration options should remain below the
CYGPKG_LI BMpackage inthe overal hierarchy, but should be inactive unless thereis appropriate hardware support. In caseslike
this an active if property is appropriate.

Another common use of active if propertiesisto avoid excessive nesting in the configuration hierarchy. If some option B is only
relevant if option A is enabled, it is possible to turn A into a component that contains B. However adding another level to the
hierarchy for a component which will contain just one entry may be considered excessive. In such cases it is possible for B to
have an active_if dependency on A.

active if takes a goal expression as argument. For details of goal expression syntax see the section called “Goal Expressions’. In
most cases the goal expression will be very simple, often involving just one other option, but more complicated expressions can be
used when appropriate. It isa so possible to have multiple active_if conditionsin asingle option, in which case all of the conditions
have to be satisfied if the option isto be active.

The active _if and requires properties have certain similarities, but they serve a different purpose. Suppose there are two options A
and B, and option B relies on functionality provided by A. This could be expressed aseither acti ve_i f Aorasrequires A
The points to note are;

» Ifactive_if AisusedandA isdisabled or inactive, then graphical toolswill generally prevent any attempt at modifying B.
For example the text for B could be grayed out, and the associated checkbutton (if B is a boolean option) would be disabled. If
the user needs the functionality provided by option B then it is necessary to go to option A first and manipulate it appropriately.

* Ifrequires Aisusedand A isdisabled or inactive, graphical tools will still allow B to be manipulated and enabled. This
would result in anew conflict which may get resolved automatically or which may need user intervention.

« If there are hardware dependencies then an active if condition is usually the preferred approach. There is no point in alowing
the user to manipulate a configuration option if the corresponding functionality cannot possibly work on the currently-selected
hardware. Much the same argument applies to coarse-grained dependencies, for example if an option depends on the presence
of aTCP/IPstack thenanacti ve_i f CYGPKG_NET condition is appropriate: it may be possible to satisfy the condition, but
it requiresthefairly drastic step of loading another package; further more, if the user wanted a TCP/IP stack in the configuration
then it would probably have been loaded already.

« If option B exists to provide additional debugging information about the functionality provided by A then again an active if
constraint isappropriate. Thereisno point inletting users enabl e extradebugging facilitiesfor afeaturethat isnot actually present.

77

CDL Language Specification

» The configuration system's inference engine will cope equally well with active if and requires properties. Suppose there is a
conflict because some third option depends on B. If B isacti ve_i f A then the inference engine will attempt to make A
active and enabled, and then to enable B if necessary. If B r equi r es A then the inference engine will attempt to enable B
and resolve the resulting conflict by causing A to be both active and enabled. Although the inference occursin adifferent order,
in most cases the effect will be the same.

Example

Do not provide extra semaphore debugging if there are no semaphores
cdl _option CYGDBG KERNEL_| NSTRUVENT Bl NSEM {
active_if CYGPKG KERNEL_SYNCH

}

Avoid another level in the configuration hierarchy
cdl _option CYGSEM KERNEL_SYNCH MUTEX_ PRI ORI TY_I NHERI TANCE_S|I MPLE_RELAY {
active_if CYGSEM KERNEL_SYNCH MUTEX_ PRI ORI TY_I NHERI TANCE_S| MPLE

}
Functionality that is only relevant if another package is |oaded
cdl _opti on CYGSEM START_U TRON_COWPATI BI LI TY {

active_if CYGPKG U TRON

}
Check that the hardware or HAL provi de the appropriate functionality

cdl _option CYGDBG HAL_ DEBUG GDB_BREAK_ SUPPORT {
active if CYG NT_HAL DEBUG GDB_STUBS BREAK

}

See Also

Property requires.

78

CDL Language Specification

Name

Property calculated — Used if the current option's value is not user-modifiable, but is calculated using a suitable CDL expression.

Synopsis

cdl _option <name> {
cal cul at ed <expressi on>

.

Description

In some casesit is useful to have a configuration option whose value cannot be modified directly by the user. This can be achieved
using a calculated, which takes a CDL expression as argument (see the section called “ Ordinary Expressions’ for a description of
expression syntax). The configuration system evaluates the expression when the current package is |loaded and whenever thereis
achange to any other option referenced in the expression. The result depends on the option's flavor:

flavor none Options with this flavor have no value, so the calculated property is not applicable.
flavor bool If the expression evaluates to a non-zero result the option is enabled, otherwise it is disabled.

flavor bool data If the result of evaluating the expression is zero then the option is disabled, otherwise the option is
enabled and its value is the result.

flavor data The value of the option isthe result of evaluating the expression.

There are a number of valid uses for calculated options, and there are a'so many cases where some other CDL facility would be
more appropriate. Valid uses of calculated options include the following:

» On some target hardware a particular feature may be user-configurable, while on other targets it is fixed. For example some
processors can operate in either big-endian or little-endian mode, while other processors do not provide any choice. It ispossible
to have an option CYGARC_BI GENDI ANwhichiscalculated in some architectural HAL packages but user-modifiablein others.

 Calculated options can provide an aternative way for one package to affect the behavior of another one. Suppose a package
may provide two possible implementations, a preferred one involving self-modifying code and a slower aternative. If the sys-
tem involves a ROM bootstrap then the slower alternative must be used, but it would be inappropriate to modify the startup
option in every HAL to impose constraints on this package. Instead it is possible to have a calculated option whose value is
{ CYG HAL_STARTUP == "ROM' 1}, and which has appropriate consequences. Arguably this is a spurious example, and
it should be a user choice whether or not to use self-modifying code with a default_value based on CYG_HAL _STARTUP, but
that is for the component writer to decide.

» Sometimes it should be possible to perform a particular test at compile-time, for example by using a C preprocessor #i f con-
struct. However the preprocessor has only limited functionality, for exampleit cannot perform string comparisons. CDL expres-
sions are more powerful.

» Occasionaly aparticular sub-expression may occur multipletimesinaCDL script. If the sub-expression is sufficiently complex
then it may be worthwhile to have a calculated option whose value is the sub-expression, and then reference that calculated
option in the appropriate places.

Alternatives to using calculated options include the following:

» CDL interfaces are aform of calculated option intended as an abstraction mechanism. An interface can be used to express the
concept of any scheduler, as opposed to a specific one such as the bitmap scheduler.

« If acalculated option would serve only to add additional information to a configuration header file, it may be possibleto achieve
the same effect using a define_proc property or one of the other properties related to header file generation.

79

CDL Language Specification

@ Tip
If the first entry in a calculated expression is a negative number, for example cal cul at ed - 1 then this can be
misinterpreted as an option instead of as part of the expression. Currently the calculated property does not take any
options, but this may change in future. Option processing halts at the sequence - -, so the desired value can be
expressed safely using cal cul ated -- -1

O Warning
Some of the CDL scripts in current eCos releases make excessive use of calculated options. This is partly because
the recommended alternatives were not always available at the time the scripts were written. It is also partly because
thereis still some missing functionality, for example define_proc properties cannot yet access the configuration data
so it may be necessary to use calculated properties to access the data and perform the desired manipulation viaa CDL
expression. New scripts should use calculated options only in accordance with the guidelines.

@ Note
For options with the booldata flavor the current CDL syntax does not alow the enabled flag and the value to be
calculated separately. Functionality to permit this may be added in afuture release.

@ Note
It has been suggested that having options which are not user-modifiable is potentially confusing, and that a top-level
cdl _const ant command should be added to the language instead of or in addition to the cal culated property. Such
a change is under consideration. However because the value of a calculated option can depend on other options, it
is not necessarily constant.

Example
A constant on sonme target hardware, perhaps user-nodifiable on other
targets.
cdl _option CYGNUM HAL_RTC_PERI OD {
di spl ay "Real -tinme clock period"
flavor dat a

cal cul at ed 12500
}

See Also

Properties default_value, flavor and legal_values,

80

CDL Language Specification

Name
Property compile — List the source files that should be built if this option is active and enabled.

Synopsis

cdl _option <nane> {
conpile [-library=libxxx.a] <list of files>

-

Description

The compile property allows component developers to specify source files which should be compiled and added to one of the
target libraries. Usually each sourcefile will end up thelibrary | i bt ar get . a. Itis possible for component writers to specify an
alternative library for an entire package using the library property. Alternatively the desired library can be specified on the compile
lineitself. For example, to add a particular sourcefiletothel i bext r as. a library the following could be used:

cdl _package CYGPKG | O SERI AL {

conpile -library=libextras.a common/tty.c

}

Details of the build processincluding such issues as compiler flags and the order in which things happen can be found in Chapter 4,
The Build Process.

compile properties can occur in any of cdl _opti on, cdl _conponent, cdl _package or cdl _i nterface. A compile
property has effect if and only if the entity that contains it is active and enabled. Typically the body of acdl _package will
define any source files that need to be built irrespective of individual options, and each cdl _conponent, cdl _opti on, and
cdl _i nt er f ace will define sourcefilesthat are more specific. A single compile property can list any number of sourcefiles, all
destined for the samelibrary. A cdl _opt i on or other entity can contain multiplecompile properties, each of which can specify
adifferent library. It is possible for a given source file to be specified in compile properties for several different options, in which
case the source file will get built if any of these options are active and enabled.

If the package follows the directory layout conventions then the configuration tools will search for the specified source files first
inthe sr ¢ subdirectory of the package, then relative to the package directory itself.

@ Note

A shortcoming of the current specification of compile properties is that there is no easy way to specify source files
that should be built unless an option is enabled. It would sometimes be useful to be ableto say: “if option Aisenabled
then compilefile x. c, otherwise compilefiley. c. There are two simple ways of achieving this:

» Alwayscompiley. c, typically by listing it in the body of the cdl _package, but use#i f ndef A to produce
an empty object fileif option Aisnot enabled. This has the big disadvantage that the file always gets compiled and
hence for some configurations builds will take longer than necessary.

e Use a calculated option whose value is ! A, and have aconpi | e y. c property in its body. This has the big
disadvantage of adding another calculated option to the configuration.

It is likely that this will be resolved in the future, possibly by using some sort of expression as the argument to a
compile property.

81

CDL Language Specification

@ Note
Currently it is not possible to control the priority of a compile property, in other words the order in which afile gets
compiled relative to other build steps. This functionality might prove useful for complicated packages and should

be added.

Example

cdl _package CYGPKG. | NFRA {
di spl ay "I nfrastructure"
include_dir cyg/infra
description
Common types and useful nacros.
Traci ng and assertion facilities.
Package startup options."

conpi l e startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \

dummyxxmai n. cxx nmencpy.c menset.c del ete.cxx \
di ag. cxx tcdi ag. cxx

}

See Also

Properties make, make _object and library.

82

CDL Language Specification

Name

Property default_value — Provide a default value for this option using a CDL expression.

Synopsis

cdl _option <nanme> {
def aul t _val ue <expressi on>

N

Description

The default_value property allows the initial value of a configuration option to depend on other configuration options. The argu-
ments to the property should be a CDL expression, see the section called “ Ordinary Expressions’ for the syntactic details. In many
cases a simple constant value will suffice, for example:

cdl _conmponent CYGPKG_KERNEL_EXCEPTI ONS {

default _value 1
cdl _opti on CYGSEM KERNEL_EXCEPTI ONS_DECCDE {

defaul t _value 0

}
}

However it is also possible for an option's default value to depend on other options. For example the common HAL package
provides some support functions that are needed by the eCos kernel, but are unlikely to be useful if the kernel is not being used.
This relationship can be expressed using:

cdl _option CYGFUN HAL_COMVON_KERNEL_SUPPORT {

def aul t _val ue CYGPKG_KERNEL
}

If the kernel is loaded then this HAL option is automatically enabled, although the user can still disable it explicitly should this
prove necessary. If the kernel is not loaded then the option is disabled, although it can still be enabled by the user if desired.
default_value expressions can be more complicated than this if appropriate, and provide a very powerful facility for component
writers who want their code to “just do the right thing” in awide variety of configurations.

The CDL configuration system evaluates the default_value expression when the current package is loaded and whenever thereis
achange to any other option referenced in the expression. The result depends on the option's flavor:

flavor none Options with this flavor have no value, so the default_value property is not applicable.
flavor bool If the expression evaluates to a non-zero result the option is enabled by default, otherwiseiit is disabled.

flavor bool data If the result of evaluating the expression is zero then the option is disabled, otherwise the option is
enabled and its value is the result.

flavor data The default value of the option is the result of evaluating the expression.

A cdl _opti on or other entity can have at most one default_value property, and it isillega to have both a calculated and a
default_value property in one body. If an option does not have either a default_value or a calculated property and it does not have
the flavor none then the configuration tools will assume a default value expression of 0.

On occasion it is useful to have a configuration option A which has both a requires constraint on some other option B and a
default_value expression of B. If option B is not enabled then A will also be disabled by default and no conflict arises. If B is
enabled then A also becomes enabled and again no conflict arises. If a user attempts to enable B but not A then there will be a

83

CDL Language Specification

conflict. Users should be able to deduce that the two options are closely interlinked and should not be manipulated independently
except in very unusual circumstances.

@ Tip
If the first entry in a default_value expression is a negative number, for example def aul t _val ue -1 then this
can be misinterpreted as an option instead of as part of the expression. Currently the default_value property does not
take any options, but this may change in future. Option processing halts at the sequence - - , so the desired value can
be expressed safely usingdef aul t _value -- -1

@ Note
In many cases it would be useful to calculate default values using some global preferences, for example:
cdl _option CYG MP_LI BC_STRI NG PREFER_SMALL_TO FAST {

def aul t _val ue CYGGLO _CODESI ZE > CYGGE.O_SPEED
}

Such global preference options do not yet exist, but are likely to be added in afuture version.

@ Note
For options with the booldata flavor the current syntax does not allow the default values of the enabled flag and the
value to be controlled separately. Functionality to permit this may be added in afuture release.

Example

cdl _option CYGDBG HAL_DEBUG GDB_THREAD SUPPORT {
di spl ay "Include GDB multi-threadi ng debug support™
requires CYGDBG_KERNEL_DEBUG GDB_THREAD_ SUPPORT
defaul t _val ue CYGDBG KERNEL_DEBUG GDB_THREAD SUPPORT
description
This option enabl es some extra HAL code which is needed
to support nulti-threaded source | evel debugging."

}

See Also

Properties calculated, flavor and legal_values.

CDL Language Specification

Name
Property define — Specify additional #def i ne symbols that should go into the owning package's configuration header file.

Synopsis

cdl _option <nane> {
define [-file=<filenane>] [-format=<format>] <synbol >

, o

Description

Normally the configuration system generates asingle#def i ne for each option that is active and enabled, with the defined symbol
being the name of the option. These#def i ne' s goto the package's own configuration header file, for examplepkgconf / ker -
nel . h for kernel configuration options. For the majority of options this is sufficient. Sometimesit is useful to have more control
over which #def i ne' s get generated.

The define property can be used to generate an additional #def i ne if the option is both active and enabled, for example:

cdl _option CYGNUM LI BC_STDI O FOPEN MAX {

def i ne FOPEN_MAX
}

If this option is given the value 40 then the following #def i ne' s will be generated in the configuration header pkg-
conf/libc. h:

#defi ne CYGNUM LI BC_STDI O FOPEN_MAX 40
#def i ne FOPEN_MAX 40

Thedefault #def i ne can be suppressed if desired using theno_define property. Thisisuseful if the symbol should only be defined
inpkgconf/ syst em h and not in the package's own configuration header file. The value that will be used for this#def i ne
isthe same as for the default one, and depends on the option's flavor as follows:

flavor none Options with this flavor are always enabled and have no value, so the constant 1 will be used.

flavor bool If the option is disabled then no #def i ne will be generated. Otherwise the constant 1 will be used.

flavor bool data If theoptionisdisabled then no #def i ne will be generated. Otherwise the option's current value will
be used.

flavor data The option's current value will be used.

For active options with the dat a flavor, and for active and enabled options with the bool dat a flavor, either one or two #de-
fine' s will be generated. These take the following forms:

#defi ne <synbol > <val ue>
#defi ne <synbol >_<val ue>

For thefirst #def i ne itispossibleto control the format used for the value using a- f or mat =<f or mat > option. For example,
the following can be used to output some configuration data as a C string:

cdl _option <nane> {

define -format="\\\"%\\\"" <synbol >
}

The implementation of this facility involves concatenating the Tcl command f or mat , the format string, and the string represen-
tation of the option's value, and evaluating thisin a Tcl interpreter. Therefore the format string will be processed twice by a Tcl
parser, and appropriate care has to be taken with quoting.

85

CDL Language Specification

Thesecond #def i ne will begenerated only if isavalid C preprocessor macro symbol. By default the symbols generated bydefine
properties will end up in the package's own configuration header file. The - f i | e option can be used to specify an alternative
destination. At the time of writing the only valid alternative definitionis- f i | e=syst em h, which will send the output to the
global configuration header file pkgconf/ syst em h.

A Caution

Carehastobetakenwiththe- f or mat option. Becausethe Tcl interpreter'sf or mat command isused, this property
is subject to any problems with the implementation of thisin the Tcl library. Generally there should be no problems
with string data or with integers up to 32 bits, but there may well be problems if 64-bit datais involved. Thisissue
may be addressed in a future release.

Example

cdl _conponent CYG HAL_STARTUP {
di spl ay "Startup type"
flavor dat a

| egal _values {"RAM' "ROM' }
def aul t _val ue {"RAM'}

no_defi ne

define -file=system h CYG HAL_STARTUP
}
See Also

Properties define_format, define_header, define_proc, if _define and no_define.

86

CDL Language Specification

Name

Property define_format — Control how an option's value will appear in the configuration header file.

Synopsis

cdl _option <nanme> {
define_format <format string>

N

Description

For active options with the dat a flavor, and for active and enabled options with the bool dat a flavor, the configuration tools
will normally generate two #def i ne' s in the package's configuration header file. These take the following forms:

#def i ne <nanme> <val ue>
#def i ne <nanme>_<val ue>

Thedefine_format property can be used to control exactly what appearsasthevaluefor thefirst of these#def i ne' s. For example,
the following can be used to output some configuration data as a C string:

cdl _option <nane> {

define -format="\\\"%\\\"" <synbol >
}

The implementation of define_format involves concatenating the Tcl command f or mat , the format string, and the string repre-
sentation of the option's value, and evaluating thisin a Tcl interpreter. Therefore the format string will be processed twice by a Tcl
parser, and appropriate care has to be taken with quoting.

The second #def i ne will be generated only if isavalid C preprocessor macro symbol, and is not affected by the define_format
property. Also, the property is only relevant for options with the dat a or bool dat a flavor, and cannot be used in conjunction
with the no_define property since it makes no sense to specify the format if no #def i ne is generated.

2 Caution
Because the Tcl interpreter'sf or mat command is used, this property is subject to any problems with the implemen-
tation of thisin the Tcl library. Generally there should be no problems with string data or with integers up to 32 bits,
but there may well be problems if 64-bit dataisinvolved. Thisissue may be addressed in a future release.

Example

cdl _opti on CYGNUM U TRON_VER | D {

di spl ay "OS identification"

flavor dat a

| egal _values 0 to OxFFFF

defaul t _value 0

define_format "O0x%04x"

description
This value is returned in the "id
field of the T_VER structure in
response to a get_ver() systemcall."

}

See Also

Properties define, define_header, define_proc, if_define and no_define.

87

CDL Language Specification

Name
Property define_header — Specify the configuration header file that will be generated for a given package.

Synopsis

cdl _package <nane> {
defi ne_header <file nane>

N

Description

When the configuration tools generate a build tree, one of the steps is to output each package's configuration data to a header
file. For example the kernel's configuration data gets output to pkgconf / ker nel . h. Thisallows each package's source code to
#i ncl ude the appropriate header file and adapt to the choices made by the user.

By default the configuration tools will synthesize a file name from the package name. This involves removing any prefix such as
CYGPKG _, up to and including the first underscore, and then converting the remainder of the name to lower case. In some cases
it may be desirable to use a different header file, for example an existing package may have been ported to eCos and the source
codemay already #i ncl ude aparticular filefor configuration data. In such cases adefine_header property can be used to specify
an aternative filename.

The define_header property can only be used in the body of a cdl _package command. It applies to a package as a whole
and cannot be used at a finer grain. The name specified in a define_header property will always be interpreted as relative to the
i ncl ude/ pkgconf sub-directory of theinstall tree.

@ Note
For hardware-specific packages such as device drivers and HAL packages, the current scheme of generating a con-
figuration header file name based on the package name may be abandoned. Instead al hardware packages would
send their configuration datato asingle header file, pkgconf / har dwar e. h. Thiswould makeit easier for codeto
obtain details of the current hardware, but obvioudly there are compatibility issues. For now it is recommended that
all hardware packages specify their configuration header file explicitly.

Example

cdl _package CYGPKG HAL_ARM {
di spl ay "ARM ar chi tecture"
par ent CYGPKG_HAL
har dwar e
include_dir cyg/ hal
defi ne_header hal _armh

.

See Also

Properties define, define_format, define_proc, if_define, no_define and hardware,

88

CDL Language Specification

Name
Property define_proc — Use afragment of Tcl code to output additional data to configuration header files.

Synopsis

cdl _option <nane> {
define_proc <Tcl script>

,

Description

For most configuration optionsit is sufficient to have an entry in the configuration header file of the form:

#def i ne <nanme> <val ue>

In some cases it is desirable to perform some more complicated processing when generating a configuration header file. There
are anumber of CDL properties for this, including define format and if_define. The most flexible is define_proc: this allows the
component writer to specify a Tcl script that gets invoked whenever the configuration system generates the header file for the
owning package. The script can output anything to the header file, for example it could generate a C data structure based on various
configuration values.

At thepoint that thedefine_proc script isinvoked therewill betwo channelsto openfiles, accessibleviaTcl variables. cdl _head-

er isachannel to the current package'sown header filefor examplepkgconf / ker nel . h;cdl _syst em header isachannel
to the global configuration file pkgconf / syst em h. A typical define proc script will use the put s command to output data
to one of these channels.

define_proc properties only take effect if the current option is active and enabled. The default behavior of the configuration system
for an option with the bool flavor corresponds to the following define_proc:

cdl _option XXX {

define_proc {
puts $cdl _header "#define XXX 1"
}

}

O Warning
In the current implementation it is not possible for a define_proc property to examine the current values of various
configuration options and adapt accordingly. Thisis a mgjor limitation, and will be addressed in future versions of
the configuration tools.

Example

cdl _package CYGPKG HAL_ARM PI D {
di spl ay "ARM PI D eval uation board"
par ent CYGPKG_HAL_ARM
define_header hal _armpid.h
include dir cyg/ hal

har dwar e

define_proc {
puts $::cdl _system header "#define CYGBLD HAL_TARGET H <pkgconf/hal _arm h>"
puts $::cdl _system header "#define CYGBLD HAL_PLATFORM H <pkgconf/hal _arm pid. h>"
puts $::cdl _header ""
puts $::cdl _header "#define HAL_PLATFORM CPU \"ARM 7TDM \ " "
puts $::cdl _header "#define HAL_PLATFORM BOARD \"PID\""
puts $::cdl _header "#define HAL_PLATFORM EXTRA \"\""

89

CDL Language Specification

puts $::cdl _header ""
}

,

See Also

Properties define, define format, define_header, if define and no_define.

90

CDL Language Specification

Name

Property description — Provide atextual description for an option.

Synopsis

cdl _option <nanme> {
description <text>

N

Description

Userscan only be expected to manipul ate configuration options sensibly if they are given sufficient information about these options.
There are three properties which serve to explain an option in plain text: the display property gives atextual alias for an option,
whichisusually more comprehensiblethan something like CYGPKG _LI BC_TI ME_ZONES; the description property givesalonger
description, typically a paragraph or so; the doc property specifies the location of additional on-line documentation related to a
configuration option. In the context of agraphical tool the display string will be the primary way for usersto identify configuration
options; the description paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requestsiit.

At present there is no way of providing any sort of formatting mark-up in a description. It is possible that future versions of the
configuration tools will provide some control over the way the description text gets rendered.

Example
cdl _option CYGDBG | NFRA DEBUG TRACE MESSAGE {
di spl ay "Use trace text"

default_value 1

description
Al trace calls within eCos contain a text nmessage
whi ch shoul d give sone informati on about the circunstances
These text messages will end up being enbedded in the
application image and hence there is a significant penalty
in ternms of inmage size
It is possible to suppress the use of these nessages by
di sabling this option
This results in smaller code size, but there is |ess
human-readabl e i nformati on available in the trace out put,
possibly only filenanmes and |ine nunbers."

}

See Also

Properties display and doc.

91

CDL Language Specification

Name
Property display — Provide a short string describing this option.

Synopsis

cdl _option <nanme> {
di spl ay <string>

N

Description

Userscan only be expected to manipul ate configuration options sensibly if they are given sufficient information about these options.
There are three properties which serve to explain an option in plain text: the display property gives atextual alias for an option,
whichisusually more comprehensiblethan something like CYGPKG _LI BC_TI ME_ZONES; the description property givesalonger
description, typically a paragraph or so; the doc property specifies the location of additional on-line documentation related to a
configuration option. In the context of agraphical tool the display string will be the primary way for usersto identify configuration
options; the description paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requestsiit.

Example

cdl _option CYGNUM KERNEL_SYNCH MBOX_QUEUE_SI ZE {
di spl ay "Message box queue size"
flavor dat a

| egal _values 1 to 65535

defaul t _val ue 10

description
Thi s configuration option controls the nunber of nessages
that can be queued in a nmessage box before a non-bl ocki ng
put () operation will fail or a blocking put() operation will
bl ock. The cost in menory is one pointer per message box for
each possi bl e nessage. "

}

See Also

Properties description and doc.

92

CDL Language Specification

Name

Property doc — The location of online-documentation for a configuration option.

Synopsis

cdl _option <nanme> {
doc <URL; >

N

Description

Userscan only be expected to manipul ate configuration options sensibly if they are given sufficient information about these options.
There are three properties which serve to explain an option in plain text: the display property gives atextual alias for an option,
whichisusually more comprehensiblethan something like CYGPKG _LI BC_TI ME_ZONES; the description property givesalonger
description, typically a paragraph or so; the doc property specifies the location of additional on-line documentation related to a
configuration option. In the context of agraphical tool the display string will be the primary way for usersto identify configuration
options; the description paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requestsiit.

The documentation may be an absolute URL, but more generally the on-line documentation will be shipped with the package and
can be accessed viaarelative URL. If the package follows the directory layout conventions then the configuration toolswill search
for the specified html file first in the doc subdirectory of the package, then relative to the package directory itself. The URL may
contain a# character to specify an anchor within a page.

O Warning
At thetime of writing the eCospackagesin the standard distribution do not conform to thedirectory layout conventions
when it comesto the documentation. I nstead of organizing the documentation on a per-package basisand placingitin
the corresponding doc sub-directories, all the documentation is kept in acentral location. This should get addressed
in afuture release of the system. Third party component writers should follow the layout conventions.

Example

cdl _package CYGPKG _KERNEL {

di spl ay "eCos kernel"

doc ref/ecos-ref. 4. htn

include_dir cyg/ ker ne

description
Thi s package contains the core functionality of the eCos
kernel. It relies on functionality provided by various HAL
packages and by the eCos infrastructure. In turn the eCos
kernel provides support for other packages such as the device
drivers and the ul TRON conpatibility |ayer."

,

See Also

Properties description and display.

93

CDL Language Specification

Name

Property flavor — Specify the nature of a configuration option.

Synopsis

cdl _option <nane> {
flavor <flavor>

,

Description

The state of a CDL configuration option is asomewhat complicated concept. This state determines what happens when abuild tree
is generated: it controls what files get built and what #def i ne' s end up in configuration header files. The state also controls the
values used during expression evaluation. The key concepts are:

1. Anoption may or may not beloaded into the current configuration. However it is still possible for packagesto reference options
which are not loaded in a requires constraint or other expression. If an option is not loaded then it will have no direct effect on
the build process, and 0 will be used for expression evaluation.

2. Even if an option is loaded it may till be inactive. Usually this is controlled by the option's location in the configuration
hierarchy. If an option's parent is active and enabled then the option will normally be active. If the parent is either inactive
or disabled then the option will be inactive. For example, if kernel timedlicing is diabled then the option CYGNUM _KER-
NEL_SCHED TI MESLI CE_TI CKSiisirrelevant and must have no effect. The active if property can be used to specify addi-
tional constraints. If an optionisinactivethenit will have no direct effect on the build process, in other wordsit will not cause any
filesto get built or #def i ne' s to be generated. For the purposes of expression evaluation an inactive option has avalue of 0.

3. An option may be enabled or disabled. Most options are boolean in nature, for example a particular function may get inlined or
it may involve afull procedure call. If an option is disabled then it has no direct effect on the build process, and for the purposes
of expression evaluation it has avalue of 0.

4. An option may also have additional data associated with it, for example a numerical value used to control the size of an array.

Most options are boolean in nature and do not have any additional associated data. For some options only the data part makes sense
and users should be unable to manipulate the enabled/disabled part of the state. For a comparatively small number of options it
makes sense to have the ability to disable that option or to enable it and associate dataas well. Finally, when constructing an option
hierarchy it is occasionally useful to have entities which serve only as placeholders. The flavor property can be used to control all
this. There are four possible values. It should be noted that the active or inactive state of an option takes priority over the flavor: if
an option isinactive then no #def i ne' s will be generated and any build-related properties such as compile will be ignored.

flavor none The none isintended primarily for placeholder components in the hierarchy, although it can be used
for other purposes. Options with this flavor are always enabled and do not have any additional data
associated with them, so there is no way for users to modify the option. For the purposes of expression
evaluation an option with flavor none aways has the value 1. Normal #def i ne processing will take
place, sotypically asingle#def i ne will begenerated using the option nameand avalueof 1. Similarly
build-related properties such as compile will take effect.

flavor bool Boolean options can be either enabled or disabled, and there is no additional data associated with them.
If aboolean option is disabled then no #def i ne will be generated and any build-related properties such
as compile will be ignored. For the purposes of expression evaluation a disabled option has the value
0. If a boolean option is enabled then normal #def i ne processing will take place, al build-related
properties take effect, and the option's value will be 1.

flavor dat a Options with this flavor are always enabled, and have some additional data associated with them which
can be edited by the user. Thisdata can be any sequence of characters, althoughin practicethelegal _val-

94

CDL Language Specification

flavor bool dat a

ues property will often be used to impose constraints. In appropriate contexts such as expressions the
configuration toolswill attempt to interpret the data asinteger or floating point numbers. Since an option
with the dat a flavor cannot be disabled, normal #def i ne processing takes place and the data will
be used for the value. Similarly al build-related properties take effect, and the option's value for the
purposes of expression evaluation is the data.

Thiscombinesthebool and dat a flavors. The option may be enabled or disabled, and in addition the
option has some associated data. If the option isdisabled then no#def i ne will be generated, the build-
related properties have no effect, and for the purposes of expression evaluation the option's value is 0.
If the option is enabled then a#def i ne will be generated using the data as the value, al build-related
properties take effect, and the option's value for the purposes of expression evaluationisthedata. If 0 is
legal datathen it is not possible to distinguish this case from the option being disabled or inactive.

Optionsand componentshavethebool flavor by default, but this can be changed asdesired. Packagesalwayshavethebool dat a
flavor, and this cannot be changed. Interfaces have the dat a flavor by default, since the value of an interface is a count of the
number of active and enabled interfaces, but they can be given the bool or bool dat a flavors.

@ Note
The expression syntax heedsto be extended to allow the loaded, active, enabled and data aspects of an option's stateto
be examined individually. Thiswould allow component writers to distinguish between a disabled bool dat a option
and an enabled one which has a value of 0. Such an enhancement to the expression syntax may also prove useful
in other circumstances.

Example

cdl _conmponent CYGPKG_LI BM COWPATI BI LI TY {
cdl _conmponent CYGNUM LI BM _COWPATI BI LI TY {

flavor bool dat a

cdl _option CYGNUM LI BM COVPAT DEFAULT {

flavor data

,

cdl _conmponent CYGPKG LI BM TRACE {

flavor bool

,

See Also

Properties calculated, default_value and legal_values,

95

CDL Language Specification

Name
Property hardware — Specify that a package is tied to specific hardware.

Synopsis

cdl _option <nanme> {
active_if <condition>

N

Description

Some packages such as device drivers and HAL packages are hardware-specific, and generally it makes no sense to add such
packages to a configuration unless the corresponding hardware is present on your target system. Typically hardware package
selection happens automatically when you select your target. The hardware property can be used in the body of acdl _package
command to indicate that the package is hardware-specific.

3 Note

At the time of writing the hardware property is largely ignored by the configuration tools, but this may change in
future. Amongst other possible changes, for hardware-specific packages such asdevice driversand HAL packages, the
current scheme of generating a configuration header file name based purely on the package name may be abandoned.
Instead all hardware packages would send their configuration datato asingle header file, pkgconf / har dwar e. h.
This would make it easier for code to obtain details of the current hardware, but obviously there are compatibility
issues. For now it is recommended that all hardware packages specify their configuration header file explicitly.

Example

cdl _package CYGPKG HAL_ARM {
di spl ay "ARM ar chi tecture"
par ent CYGPKG_HAL
har dwar e
i ncl ude_dir cyg/ hal
define_header hal _armh

.

See Also

Property define_header, and command cdl _package.

96

CDL Language Specification

Name

Property if_define — Output a common preprocessor construct to a configuration header file.

Synopsis

cdl _option <nanme> {
if_define [-file=<filename>] <synbol 1> <synbol 2>

N

Description

The purpose of the if_define property is best explained by an example. Suppose you want finer-grained control over assertions,
say on a per-package or even a per-file basis rather than globally. The assertion macros can be defined by an exported header file
in an infrastructure package, using code like the following:

#i f def CYGDBG_USE_ASSERTS
define CYG ASSERT(_bool _, _msg_)
CYG_MACRO_START
if (! (_bool_))
CYG_ASSERT_DOCALL(_nsg_);
CYG_MACRO_END

— e — —

#el se
define CYG ASSERT(_bool , _nsg_) CYG EMPTY_STATEMENT
#endi f

Assuming this header fileis#i ncl ude' d directly or indirectly by any code which may need to be built with assertions enabled,
the challenge is now to control whether or not CYGDBG_USE_ASSERTS is defined for any given source file. Thisis the purpose
of the if_define property:

cdl _option CYGDBG KERNEL_ USE_ASSERTS {

i f_define CYGSRC KERNEL CYGDBG USE_ASSERTS
requires CYGDBG | NFRA ASSERTI ON_SUPPORT
}

If this option is active and enabled then the kernel's configuration header file would end up containing the following:

#i f def CYGSRC_KERNEL
defi ne CYGDBG USE_ASSERTS 1
#endi f

Kernel source code can now begin with the following construct:

#def i ne CYGSRC_KERNEL 1
#i ncl ude <pkgconf/kernel . h>
#i ncl ude <cyg/infral/cyg_ass. h>

The configuration option only affects kernel source code, assuming nothing else #def i ne' s the symbol CYGSRC KERNEL.
If the per-package assertion option is disabled then CYGDBG_USE_ASSERTS will not get defined. If the option is enabled then
CYGDBG _USE_ASSERTS will get defined and assertions will be enabled for the kernel sources. It is possible to use the same
mechanism for other facilities such as tracing, and to apply it at a finer grain such as individual source files by having multiple
options with if_define properties and multiple symbols such as CYGSRC_KERNEL SCHED Bl TMAP_CXX.

The if_define property takes two arguments, both of which must be valid C preprocessor symbols. If the current option is active
and enabled then three lines will be output to the configuration header file:

#i f def <synbol 1>
define <synbol 2>
#endi f

97

CDL Language Specification

If the option is inactive or disabled then these lines will not be output. By default the current package's configuration header file
will be used, but it is possible to specify an aternative destination using a- f i | e option. At present the only legitimate alternative
destinationissyst em h, the global configuration header. if _define processing happensin addition to, not instead of, the normal
#def i ne processing or the handling of other header-file related properties.

@ Note
Theinfrastructure in the current eCos rel ease does not yet work this way. In future it may do so, and the intention is
that suitable configuration options get generated semi-automatically by the configuration system rather than having
to be defined explicitly.

@ Tip
As an alternative to changing the configuration, updating the build tree, and so on, it is possible to enable assertions
by editing a sourcefile directly, for example:
#define CYGSRC_KERNEL 1
#defi ne CYGDBG _USE_ASSERTS 1

#i ncl ude <pkgconf/kernel . h>
#i ncl ude <cyg/infral/cyg_ass. h>

The assertion header file does not care whether CYGDBG_USE_ASSERTS is#def i ne' d viaaconfiguration option
or by explicit code. This technique can be useful to component writers when debugging their source code, although
care has to be taken to remove any such #def i ne' s later on.

Example

cdl _opti on CYGDBG KERNEL_USE_ASSERTS {
di spl ay "Assertions in the kernel package"

i f_define CYGSRC KERNEL CYGDBG USE_ASSERTS
requires CYGDBG | NFRA ASSERTI ON_SUPPORT

}

See Also

Properties define, define format, define_header, define_proc and no_define.

98

CDL Language Specification

Name

Property implements — Enabling this option provides one instance of a more general interface.

Synopsis

cdl _option <nanme> {
i npl ements <interface>

N

Description

The CDL interface concept provides an abstraction mechanism that can be useful in many different circumstances. Essentially
an interface is a calculated option whose value is the number of active and enabled options which implement that interface. For
example the interface CYG NT_KERNEL_SCHEDULER has a value corresponding to the number of schedulers in the system,
typically just one.

The implements property takes a single argument, which should be the name of an interface. This interface may be defined in the
same package as the implementor or in some other package. In the latter case it may sometimes be appropriate for the implementor
or the implementor's package to have arequires property for the package containing the interface. An option may contain multiple
implements properties. It is possible for an option to implement a given interface multiple times, and on occasion thisis actually
useful.

Example
cdl _option CYGSEM KERNEL_SCHED M_QUEUE {
di spl ay "Multi-level queue schedul er”

default_value 1
i npl enent s CYGA NT_KERNEL_SCHEDULER

.

See Also

Commandcdl i nterface.

99

CDL Language Specification

Name
Property include_dir — Specify the desired location of a package's exported header filesin theinstall tree.

Synopsis

cdl _package <nane> {
i nclude_dir <sub-directory>

N

Description

Most packages export one or more header files defining their public interface. For example the C library exports header files such
asstdi 0. handct ype. h. If the package follows the directory layout conventions then the exported header files will normally
be found in the package'si ncl ude sub-directory. Alternatively the include files property can be used to specify which header
files should be exported.

By default a package's exported header files will be copied to thei ncl ude sub-directory of the install tree. Thisis correct for
packages like the C library because that is the correct location for files such as st di 0. h. However to reduce the probability
of name clashes it is desirable for packages to use different sub-directories, for example infrastructure header files get copied to
i ncl ude/ cyg/ i nf r a rather than to the top-level i ncl ude directory itself.

It would be possible to replicate these sub-directories in each package's source tree, such that the infrastructure header file sources
livedini ncl ude/ cyg/ i nfra in the source tree as well asin the install tree. This would make things more difficult for the
package developers. Instead it is possible to specify the desired install tree sub-directory using aninclude_dir property, for example
i nclude _dir cyg/infra.

The include_dir property can only be used in the body of acdl _package command, since it applies to al of the header files
exported by a package, and only one include_dir property can be used. If there is no include _dir property then exported header
fileswill end up in the top-level i ncl ude directory of the install tree.

Example
cdl _package CYGPKG. | NFRA {
di spl ay "I nfrastructure"

include_dir cyg/infra
description
Common types and useful nacros.
Traci ng and assertion facilities.
Package startup options."

,

See Also

Property include_files, and command cdl _package.

100

CDL Language Specification

Name
Property include_files— List the header filesthat are exported by a package.

Synopsis

cdl _package <nane> {
include files <filel> ..

N

Description

Most packages export one or more header files defining their public interface. For example the C library exports header files such
asstdi 0. handct ype. h. If the package follows the directory layout conventions then the exported header files will normally
be found in the package'si ncl ude sub-directory. For packages which do not follow these conventions, typically simple ones for
which a complicated sub-directory hierarchy is undesirable, there has to be an alternative way of specifying which header file or
files define the public interface. The include_files property provides support for this.

By default, if a package does not haveani ncl ude subdirectory and it does not have an include_files property then all fileswith
asuffix of . h,. hxx,.inl or.i nc will betreated as public header files. However some of these may be private files containing
implementation details. If thereisan include_files property then only the fileslisted in that property will be exported.

If a package should not export any header files but does contain private implementation headers, an include files property with
no arguments should be used.

Example

cdl _package <SOVE_PACKAGE> {

include_dir <sone directory>
include_files interface.h

}
cdl _package <ANOTHER_PACKAGE> {

include_files

}

See Also

Property include _dir, and command cdl _package.

101

CDL Language Specification

Name

Property legal_values — Impose constraints on the possible values for an option.

Synopsis

cdl _option <nane> {
| egal _val ues <list expression>

:

Description

Options with the dat a or bool dat a flavors can have an arbitrary sequence of characters as their data. In nearly all cases some
restrictions have to be imposed, for example the data should correspond to a number within a certain range, or it should be one
of asmall number of constants. The legal_values property can be used to impose such constraints. The arguments to the property
should be a CDL list expression, see the section called “List Expressions’ for the syntactic details. Common examples include:

| egal _values 0 to Ox7fff
| egal _val ues 9600 19200 38400
| egal _values { "RAM' "ROM' }

Thelegal_values property can only be used for options with the dat a or bool dat a flavors, since it makes little sense to further
constrain the legal values of aboolean option. An option can have at most one legal_values property.

@

K
K

Tip

If the first entry in alegal_values list expression is a negative number, for example| egal _values -1 to 1
then this can be misinterpreted as an option instead of as part of the expression. Currently the legal _values property
does not take any options, but this may change in future. Option processing halts at the sequence - - , so the desired
range can be expressed safely usingl egal _values -- -1 to 1

Note

Architectural HAL packages should provide constantswhich canbeusedinlegal_valueslist expressions. For example
it should be possible to specify anumericrangesuchas0 t o CYGARC _MAXI NT, rather than hard-wiring numbers
suchasOx7f f fffff which may not bevalid on al targets. Current HAL packages do not define such constants.

Note

The legal_values property is restricted mainly to numerical ranges and simple enumerations, and cannot cope with
more complicated data items. Future versions of the configuration system will provide additional data validation
facilities, for exampleacheck_pr oc property which specifiesaTcl script that can be used to perform the validation.

Example

cdl _option CYGNUM LI BC TI ME_STD DEFAULT_OFFSET {

di spl ay "Default Standard Tinme offset"”
flavor dat a

| egal _values -- -90000 to 90000
default_value -- 0

description
This option controls the offset fromUTC in
seconds when in |local Standard Time. This
val ue can be positive or negative. It
can also be set at run time using the
cyg_libc_time_setzoneoffsets() function."

102

CDL Language Specification

}

See Also

Properties calculated, default_value, and flavor.

103

CDL Language Specification

Name
Property library — Specify which library should contain the object files generated by building this package.

Synopsis

cdl _package <nane> {
l'ibrary <library name>

N

Description

By default all object filesthat get built for all packagesend upinasinglelibrary, | i bt ar get . a. Thismakesthings easier for the
typical application developer because it is only necessary to link with a single library, rather than with separate libraries for each
package. It ispossible to specify an aternative library for specific files as an option to the compile and make_object properties, and
thereisonelibrary | i bext ras. a which servesaspecific purposein the build system. Thelibrary property allows an aternative
library to be specified for al the object files that will be generated for a given package.

The use of the library property should be avoided, since it makes things more difficult for application developers. The property is
intended only for special cases, for exampleif there are legal objectionsto mingling object files from different packagesin asingle
library. It could also be used to work around name clash problems if two packages happen to define an exported symbol with the
same name, but any attempt to use multiple librariesin thisway is error-prone and should be avoided.

The library property takes a single argument, the name of a library, which should follow the standard naming convention of
I i b<sonet hi ng>. a. A library property can only occur inthebody of acdl _package command and appliesto all object files
generated for that package (except where explicitly overwritten witha- | i br ar y= option to one of the build-related properties).
A cdl _package body can contain at most one library property.

Example

cdl _package <SOVE_PACKAGE> {

l'ibrary |ibSomePackage. a
}

See Also

Properties compile, make, and make_object, command cdl _package.

104

CDL Language Specification

Name

Property make — Define an additional custom build step associated with an option, resulting in atarget that should not go directly
into alibrary.

Synopsis

cdl _option <nane> {
make [-priority=<pri>] {
<custom bui l d step>

}
.-

Description

When building an eCos configuration the primary target isasinglelibrary, | i bt ar get . a. In some casesit is hecessary to build
some additional targets. For example architectural HAL packages typicaly build a linker script and some start-up code. Such
additional targets can be specified by a make property. Any option can have one or more make properties, although typically such
properties only occur in the body of acdl _package command.

The make property takes a single argument, which resembles a makefile rule: it consists of atarget, alist of dependencies, and
one or more commands that should be executed. However the argument is not a makefile fragment, and custom build steps may
get executed in build environments that do not involve make. For full details of custom build steps see the section called “ Custom
Build Steps”.

O Warning
The exact syntax and limitations of custom build steps have not yet been finalized, and are subject to changein future
versions of the configuration tools.

The make property takes an optional priority argument indicating the order in which build steps take place. This priority comple-
ments the dependency list, and avoids problems with packages needing to know details of custom build steps in other packages
(which may change between releases). The defined order is:

Priority O The header files exported by the current set of packages are copied to the appropriate placesin thei ncl ude
subdirectory of theinstall tree. Any unnecessary copies are avoided, to prevent rebuilds of package and appli-
cation source modules caused by header file dependencies.

@ Note
A possible future enhancement of the build system may result in the build and install trees being
updated automatically if there has been a changeto the ecos. ecc configuration savefile.

Priority 100 All files specified in compile propertieswill get built, producing the corresponding object files. In addition any
custom build steps defined by make _object properties get executed, unlessthereisa- pri ori t y= option.

Priority 200 The libraries now get built using the appropriate object files.

Priority 300 Any custom build steps specified by make properties now get executed, unless the priority for a particular

build step is changed from its default.

For example, if a custom build step needs to take place before any of the normal source files get compiled then it should be given
a priority somewhere between 0 and 100. If a custom build step involves post-processing an abject file prior to its incorporation
into alibrary then a priority between 100 and 200 should be used.

105

CDL Language Specification

Example
cdl _package CYGPKG HAL_MN10300_AM33 {
di spl ay "M\10300 AMB3 vari ant"
par ent CYGPKG_HAL_IMN10300
i npl ement s CYG NT_HAL_WMN10300_VARI ANT
har dwar e

i ncl ude_dir cyg/ hal

defi ne_header hal _m10300_an83. h

description
The MN10300 AMB3 vari ant HAL package provi des generic
support for this processor architecture. It is also
necessary to select a specific target platform HAL
package. "

make {
<PREFI X>/ | i b/ target.|d: <PACKAGE>/src/m10300_anB3.1d
$(CC) -E -P -W,-MD, target.tnp - DEXTRAS=1 -xc $(| NCLUDE_PATH) $(CFLAGS) -0 $@ $>
@cho $@": \\" > $(notdir $@.deps
@ail +2 target.tnp >> $(notdir $@ . deps
@cho >> $(notdir $@ . deps
@mtarget.tnp
}

}

See Also

Properties compile, make object and library.

106

CDL Language Specification

Name
Property make object — Define a custom build step, resulting in an object file that should go into alibrary.

Synopsis

cdl _option <nane> {
make_object [-library=<library>] [-priority=<pri>] {
<custom bui | d step>

}
.-

Description

When building an eCos configuration the primary targetisasinglelibrary, | i bt ar get . a. Most of the object fileswhich gointo
this library will be generated as a result of compile properties. Occasionaly it may be necessary to have specia build steps for
a given object file, and this can be achieved with a make _object property. The use of this property should be avoided whenever
possible because it greatly increases the risk of portability problems, both on the host side because of possible problems with the
tools, and on the target side because a custom build step may not allow adequately for the wide variety of architectures supported
byeCos.

The make_object property takes a single argument, which resembles a makefile rule: it consists of atarget, alist of dependencies,
and one or more commands that should be executed. The target should be an object file. However the make_object argument is
not a makefile fragment, and custom build steps may get executed in build environments that do not involve make. For full details
of custom build steps see the section called “ Custom Build Steps’.

O Warning
The exact syntax and limitations of custom build steps have not yet been finalized, and may change in future versions
of the configuration tools.

The make_object property takes an optional library argument. If no library is specified then the default library for the current
package will be used, which will bel i bt ar get . a unlessthecdl _package command contains alibrary property.

Themake_object property also takesan optional priority argument indicating the order in which build stepstake place. Thispriority
complements the dependency list, and avoids problems with packages needing to know details of custom build steps in other
packages (which may change between releases). The defined order is:

Priority O The header files exported by the current set of packages are copied to the appropriate placesin thei ncl ude
subdirectory of theinstall tree. Any unnecessary copies are avoided, to prevent rebuilds of package and appli-
cation source modules caused by header file dependencies.

@ Note
A possible future enhancement of the build system may result in the build and install trees being
updated automatically if there has been a changeto the ecos. ecc configuration savefile.

Priority 100 All files specified in compile propertieswill get built, producing the corresponding object files. In addition any
custom build steps defined by make_object properties get executed, unlessthereisa- pri ori t y= option.

Priority 200 The libraries now get built using the appropriate object files.

Priority 300 Any custom build steps specified by make properties now get executed, unless the priority for a particular

build step is changed from its default.

107

CDL Language Specification

For example, if a custom build step needs to take place before any of the normal source files get compiled then it should be given
a priority somewhere between 0 and 100. If a custom build step involves post-processing an object file prior to its incorporation
into alibrary then a priority between 100 and 200 should be used. It is not sensible to have a priority above 200, since that would
imply building an additional object file for alibrary that has already been created.

Example

cdl _option XXX {
make_obj ect {
parser.o: parser.y
yacc $<
$(CC) $(CFLAGS) -0 $@y.tab.c

}

See Also

Properties compile, make and library.

108

CDL Language Specification

Name

Property no_define — Suppress the normal generation of a preprocessor #def i ne symbol in a configuration header file.

Synopsis

cdl _option <nanme> {
no_defi ne

N

Description

By default all active and enabled propertiesresult in either one or two #def i ne' d symbolsin the package's configuration header
file, and this is one of the main ways in which options can affect packages at build-time. It is possible to suppress the default
#def i ne' s by specifying ano_define property in the body of an option or other CDL entity. This property takes no arguments
and should occur only once in a given body.

The no_define property is frequently used in conjunction with one of the other header-file related properties such as define. If one
of the other properties is used to export the required information to a configuration header file then often there is little point in
exporting the default #def i ne aswell — in fact there could be a name clash. Theno_define property can also be useful if the
sole purpose of an option is to affect which files get built, and the default #def i ne would never get tested in any source code.
However in such cases the default #def i ne ismostly harmless and thereis little to be gained by suppressing it.

Example

cdl _conmponent CYG HAL_STARTUP {
di spl ay "Startup type"
flavor dat a

| egal _values { "RAM' "ROM' }

defaul t _val ue {"RAM'}

no_defi ne

define -file systemh CYG HAL_ STARTUP

.

See Also

Properties define, define_format, define_header, define_proc and if_define.

109

CDL Language Specification

Name

Property parent — Control the location of an option in the configuration hierarchy.

Synopsis

cdl _option <nane> {
parent <conponent or package>

:

Description

Configuration options live in a hierarchy of packages and components. By default a given option's position in the hierarchy is a
simple consequence of its position within the CDL scripts. Packages are generally placed at the top-level of the configuration.
Any components or options that are defined at the same level as the cdl _package command in a package's top-level CDL
script are placed immediately below that package in the hierarchy. Any options or components that are defined in the body of a
cdl _package or cdl _conponent command, or that are read in as aresult of processing a component's script property, will
be placed immediately below that package or component in the hierarchy.

In some circumstances it is useful to specify an aternative position in the hierarchy for a given option. For example it is often
convenient to re-parent device driver packages below CYGPKG | Oin the configuration hierarchy, thus reducing the number of
packages at the top level of the hierarchy and making navigation easier. The parent property can be used to achieve this.

The parent property takes a single argument, which should be the name of a package or component. The body of acdl _opti on
or other CDL entity can contain at most one parent property.

Although the parent property affects an option's position in the overall hierarchy and hence whether or not that option is active,
a re-parented option still belongs to the package that defines it. By default any #def i ne' s will be exported to that package's
configuration header file. Any compile properties can only reference source files present in that package, and it is not directly
possible to cause some file in another package to be built by re-parenting.

As aspecial case, if an empty string is specified for the parent then the option is placed at the top of the hierarchy, ahead of any
packageswhich are not explicitly re-parented inthisway. Thisfacility isuseful for configuration options such asglobal preferences
and default compiler flags.

Q@ ..

If an option isre-parented somewhere bel ow another package and that other packageis not actually loaded, the option
isan orphan and its active/inactive state is undefined. In such casesit isagood ideafor the owning package to require
the presence of the other one. Unfortunately this technique does not work if apackage asawholeis reparented below
another one that has not been loaded: the package is orphaned so it may be automatically inactive, and hence any
requires properties would have no effect.

Example

cdl _package CYGPKG HAL_I 386 {
di spl ay "i 386 architecture"
par ent CYGPKG_HAL
har dwar e
include_dir cyg/ hal
defi ne_header hal _i 386.h

,

cdl _conmponent CYGBLD_GLOBAL_OPTI ONS {
di spl ay "d obal build options"

110

CDL Language Specification

par ent

,

See Also

Property script, commandscdl _conponent and cdl _package.

111

CDL Language Specification

Name
Property requires— List constraints that the configuration should satisfy if a given option is active and enabled..

Synopsis

cdl _option <nanme> {
requi res <goal expression>

N

Description

Configuration options are not independent. For examplethe C library can provide thread-saf e implementations of certain functions,
but only if the kernel is present, if the kernel provides multi-threading, and if the kernel options related to per-thread data are
enabled. It is possible to express such constraints using reguires properties.

The arguments to a requires property should constitute a goal expression, as described in the section called “List Expressions’.
Most goal expressions are relatively simple because the constraints being described are simple, but complicated expressions can
be used when necessary. The body of an option or other CDL entity can contain any number of requires constraints. If the optionis
active and enabled then all these constraints should be satisfied, and any goal expressionswhich evaluateto O will result in conflicts
being raised. It is possible for users to ignore such conflicts and attempt to build the current configuration anyway, but there is no
guarantee that anything will work. If an option isinactive or disabled then its requires constraints will be ignored.

The configuration system contains an inference engine which can resolve many types of conflicts automatically. For example, if
option Aiis enabled and requires an option B that is currently disabled then the inference engine may attempt to resolve the conflict
by enabling B. However this will not aways be possible, for example there may be other constraints in the configuration which
force B to be disabled at present, in which case user intervention is required.

Example
cdl _conponent CYGPKG_| O_SERI AL_POWERPC_COGENT_SERI AL_A {
di spl ay "Cogent PowerPC serial port A driver"
flavor bool
default _value 0
requires (CYG MP_KERNEL_| NTERRUPTS_CHAIN || \
I CYGPKG | O_SERI AL_POWERPC_COGENT_SERI AL_B)
}
See Also

Property active if.

112

CDL Language Specification

Name

Property script — Include additional configuration information from another CDL script.

Synopsis

cdl _conponent <nane> {
script <fil ename>

N

Description

It is possible to define al the configuration options and sub-components for a given package in a single CDL script, either by
nesting them in the appropriate command bodies, by extensive use of the parent property, or by some combination of these two.
However for large packages this is inconvenient and it is better to split the raw configuration data over several different files.
The script property can be used to achieve this. It takes a single filename as argument. If the package follows the directory layout
conventions then the configuration tools will look for the specified file in the cdl sub-directory of the package, otherwise it will
look for the file relative to the package's top-level directory.

The script property can only occur inthe body of acdl _conponent command, and only one script property per body is allowed.

Example

cdl _conponent CYGPKG Ul TRON_TASKS {
di spl ay "Tasks"
flavor none

description
ul TRON Tasks are the basic bl ocks of nulti-tasking
in the ul TRON worl d; they are threads or |ightweight
processes, sharing the address space and the CPU.
They communi cate using the primtives outlined above
Each has a stack, an entry point (a C or C++ function)
and (where appropriate) a scheduling priority."

scri pt t asks. cd

}

See Also

Command cdl _conponent , and property parent.

113

	The eCos Component Writer's Guide
	Table of Contents
	Chapter 1. Overview
	Terminology
	Component Framework
	Configuration Option
	Component
	Package
	Configuration
	Target
	Template
	Properties
	Consequences
	Constraints
	Conflicts
	CDL
	Component Repository

	Why Configurability?
	Approaches to Configurability
	Degrees of Configurability
	Warnings

	Chapter 2. Package Organization
	Packages and the Component Repository
	Package Versioning
	Package Contents and Layout
	Outline of the Build Process
	Configurable Source Code
	Compiler Flag Dependencies
	Package Interfaces and Implementations
	Source Code and Configuration Options

	Exported Header Files
	Configurable Functionality
	Nested #include's
	Including Configuration Headers

	Package Documentation
	Test Cases
	Host-side Support

	Making a Package Distribution
	The eCos package distribution file format
	Preparing eCos packages for distribution

	Chapter 3. The CDL Language
	Language Overview
	CDL Commands
	CDL Properties
	Information-providing Properties
	The Configuration Hierarchy
	Value-related Properties
	Generating the Configuration Header Files
	Controlling what gets Built
	Miscellaneous Properties

	Option Naming Convention
	An Introduction to Tcl
	Values and Expressions
	Option Values
	Is the Option Loaded?
	Is the Option Active
	Is the Option Enabled? What is the Data?
	Some Examples

	Ordinary Expressions
	Functions
	Goal Expressions
	List Expressions

	Interfaces
	Updating the ecos.db database

	Chapter 4. The Build Process
	Build Tree Generation
	Configuration Header File Generation
	The system.h Header

	Building eCos
	Updating the Build Tree
	Exporting Public Header Files
	Compiling
	Generating the Libraries
	The extras.o file
	Compilers and Flags
	Custom Build Steps
	Startup Code
	The Linker Script

	Building Test Cases

	Chapter 5. CDL Language Specification
	cdl_option
	cdl_component
	cdl_package
	cdl_interface
	active_if
	calculated
	compile
	default_value
	define
	define_format
	define_header
	define_proc
	description
	display
	doc
	flavor
	hardware
	if_define
	implements
	include_dir
	include_files
	legal_values
	library
	make
	make_object
	no_define
	parent
	requires
	script

